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Abs tract

Laboratory, theoretical and numerical research was conducted into the
structure and stability of baroclinic non-linear currents in a rotating fluid.
A rotating version of the dam-break problem in which a density current is gen-
erated after a barrier has been removed was studied. The speed of the current
and its width and depth were measured by Whitehead (198l1) and more extensively
by Stern, Whitehead , and Lien Hua (1982), who report the experiments and com-
pare the results to theory. Properties of a limiting bore solution for rota-
tion density currents predicted earlier by Stern are incorporated into the
above theory to predict the speed of the nose of the current. Experiments are
described in which the current width is measured to be in reasonable agreement
with the theory.

Theoretical studies of the stability of a free isolated baroclinic jet
whose free surface in cross-section intersects the water surface at two points
by Griffiths, Killworth and Stern (1982) was undertaken. The waves permit the
release of both kinetic and potential energy. They can have rapid growth
rates, the e-folding time for waves on a current with zero potential vorticity
being close to one-half of a rotation period. Experiments with a current of
buoyant fluid at the free surface of a lower layer were also conducted. The

current was observed to be always unstable.

Killworth and Stern (1982) showed that a coastal density current in a ro-
tating system is unstable to d~  :tream wave disturbances when the mean poten-
tial vorticity increases towards the (vertically-walled) coast and when the
mean current vanishes there, Other new instability modes were also found which

do not require the potential vorticity extremum of quasi-geostrophic theory.

Paldor, in his Ph.D. thesis, used Rayleigh integral to prove that an un-~
bounded geostrophic front of uniform potential vorticity is stable with respect
to small perturbations of arbitrary wavelength. Stern and Paldor (1983) used
extremum concepts to analyze large amplitude disturbances in a boundary layer

shear flow with an fnviscid and longwave theory. It wae found that initially

weak horizontal counvergences were concentrated and amplified in time.
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5.?]3 Laboratory, theoretical and numerical research was conducted into the
8 structure &hd stability of baroclinic non-linear currents in a rotating fluid.v
| A rotating version of the dam-break problem in which a density current is gen-
:% erated after a barrier has been removed was studied. The rotation causes the
‘: current to lean against the right-hand wall (looking downstream for counter-
\j clockwigse rotation) and turbulent eddies are detrained to the side rather than
' vertically. The speed of the current and its width and depth were measured by
5 whitehead (1981) and more extensively by Stern, Whitehead , and Lien Hua (1982),
ti who report the experiments and compare the results to a theory which is a mod-
?% ification of the Benjamin theory of a non-rotating density current. Properties
-~ of a limiting bore solution for rotation density currents predicted earlier by
f; Stern are incorporated into the above theory to predict that the speed of the
ﬁ; nose of the current would be 1.58 (g*h)llz, and the width of the current
%3 would be 0.42 (g*h)]'/2 f-l, where g* is reduced gravity, h is depth of the
current upstream of the nose, and f is the Coriolis parameter. Experiments are
'; described i{n which the current width is measured to be in reasonable agree&ent
;E with the theory. The velocity of the highest Reynolds number flows studies may
;j also be approaching the predicted values, although the lower Reynolds number
’ flows go more slowly,
_i‘ Theoretical studies of the stability of a free isolated baroclinic jet
;? whose free surface in cross-section intersects the water surface at two points
s by Griffiths, Killworth and Stern (1982) was undertaken. The analysis includes
g the influence of vanishing depth and large inertial effects at the edge of the
current and shows that such currents are always unstable to linearized pertur-
bations even when there 18 no extremum in the potential vorticity profile. The
h wvaves permit the release of both kinetic and potential energy. They can have
ﬂi rapid growth rates, the e-folding time for waves on a current with zero poten-
'S: tial vorticity being close to one~half of a rotation period.
N
#- Experiments with a current of buoyant fluid at the free surface of a lower
f; layer were also conducted, and the observations compared with the computed mode
t




of maximum growth rate for a flow with a uniform potgntial vorticity. The cur-
rent was cbserved to be always unstable, but, contrary to the predicted behav-
ior of the one-layer coupled mode, the dominant length scale of growing dis-
turbances was independent of current width. When the current was sufficiently
narrow compared with the Rossby deformation radius, disturbances have the

structure predicted by the one-layer theory.

Killworth and Stern (1982) showed that a coastal density current in a ro-
tating system 18 unstable to downstream wave disturbances when the mean poten-
tial vorticity increases towards the (vertically-walled) coast and when the
mean current vanishes there. Other new instability modes were also found which
do not require the potential vorticity extremum of quasi-geostrophic theory.
The instabilities release mean kinetic energy and mean potential energy as

well, though an increase of the latter can occur under certain circumstances.

Paldor, in his Ph,D. thesis at the University of Rhode Island, and in a
text prepared for publication (Paldor, 1983), used Rayleigh integral to prove
that an unbounded geostrophic front of uniform potential vorticity is stable
with respect to small perturbations of arbitrary wavelength. The front was
bounded by a motionless fluid. The ageostrophic theory developed in his study
yielded a stable, near-inertial, long-trapped mode. Recent oceanic observations
of the increase in the energy of the inertial peak in the vicinity of fronts
support the existence of this inertial trapped mode. In addition, the theory
yielded a geostrophic mode which is expected to become unstable when the poten-

tial vorticity is not uniform,

Stern and Paldor (1983) used similar extremum concepts to analyze large
amplitude disturbances in a boundary layer shear flow with an inviscid and
longwave theory. It was found that initfally weak horizontal convergences were
concentrated and amplified in time, thereby increasing the maximum normal vel-
ocity until it becomes comparable with the horizontal velocity. The longwave
theory is applied to two—dimensional disturbances, then generalized to three-

dimensional motions. The effect of an initial spanwise divergence is such as

to rationalize the inftial vorticity assumed in the two-—dimensional model.
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E Ageostrophic instability of ocean currents

By R. W. GRIFFITHS, PETER D. KILLWORTH

‘ Department of Applied Mathematics and Theoretical Physics,
5 Silver Street, Cambridge CB3 SEW, England

AND MELVIN E. STERN

Graduate School of Oceanography, University of Rhode Island,
Kingston, RI 02881, U.8.A.

(Received 9 April 1981 and in revised form 17 September 1981)

ST LRE

We investigate the stability of gravity currents, in arotating system, that are infinitely
long and uniform in the direction of flow and for which the current depth vanishes on
both sides of the flow. Thus, owing to the role of the Earth’s rotation in restraining
horizontal motions, the currents are bounded on both sides by free streamlines, or
sharp density fronts. A model is used in which only one layer of fluid is dynamically
important, with a second layer being infinitely deep and passive. The analysis includes
the influence of vanishing layer depth and large inertial effects near the edges of the
current, and shows that such currents are always unstable to linearized perturbations
(except possibly in very special cases), even when there is no extremum (or gradient)
in the potential vorticity profile. Hence the established Rayleigh condition for in-
¢ stability in quasi-geostrophic models, where inertial effects are assumed to be vanish-
: ingly small relative to Coriolis effects, does not apply. The instability does not depend
upon the vorticity profile but instead relies upon a coupling of the two free streamlines.
The waves permit the release of both kinétic and potential energy from the mean flow.
They can have rapid growth rates, the e-folding time for waves on a current with zero
potential vorticity, for example, being close to one-half of a rotation period. Though
they are not discussed here, there are other unstable solutions to this same model when
the potential vorticity varies monotonically across the stream, verifying that flows
involving a sharp density front are much more likely to be unstable than flows with
a small ratio of inertial to Coriolis forces.

Experiments with a current of buoyant fluid at the free surface of a lower layer are
described, and the observations are compared with the computed mode of maximum
growth rate for a flow with a uniform potential vorticity. The current is observed to
be always unstable, but, contrary to the predicted behaviour of the one-layer coupled
mode, the dominant length scale of growing disturbances is independent of current
width. On the other hand, the structure of the observed disturbances does vary: when
. the current is sufficiently narrow compared with the Rossby deformation radius (and
the lower layer is deep) disturbances have the structure predicted by our one-layer
model. The flow then breaks up into a chain of anticyclonic eddies. When the current
is wide, unstable waves appear to grow independently on each edge of the current and,
at large amplitude, form both anticyclonic and cyclonic eddies in the two-layer fluid.
This behaviour is attributed to another unstable mode.
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344 R. W. Griffiths, P. D. Killworth and M. K. Stern

1. Introduction

There have been many studies of the stability of stratified shear flows in a rotating
fluid. Apart from Kelvin-Helmholtz instabilities, most studies have concentrated
upon quasi-geostrophic models, in which inertial forces are small compared with
Coriolis forces. These studies reveal two fundamental types of instabilities. The first of
these takes place in a one-layer fluid. The resulting (barotrepic) instability is driven by
the horizontal shear of the basic flow, and requires an extremum in the profile of
potential vorticity (i.e. absolute vorticity divided by depth). Although potential
energy may be released by the instability, it is necessary that kinetic energy of the
mean flow be released. The second type of instability takes place in a two-layer fluid
(or, of course, a continuously stratified one). This instability, usually called baroclinic
instability (cf. Pedlosky 1864), can occur without the release of mean kinetic energy
but does require the release of mean potential energy that was stored in the density
field. Again, a necessary condition for instability is that the gradient of potential
vorticity changes sign somewhere within the fluid.

Models in which inertial forces are assumed to be much smaller than the Coriolis
forces are appropriate for large-scale motions in the ocean and atmosphere, but do not
provide a good description of many smaller-scale motions, such as the instabilities of
density fronts in the ocean, where inertial forces can be comparable with Coriolis
forces. By a ‘front’ we refer to the situation where a density surface intersects an upper
or a lower boundary (such as the ocean surface or bottom). For this situation the
conservation of potential vorticity by fluid columns aligned parallel to the axis of
rotation, along with the vanishing layer depth, suggests that the fluid vorticity near
the front may be comparable to the background (planetary) vorticity. Motions will
then be strongly influenced by inertial forces. However, there have been very few
studies (Orlanski 1968) of instabilities at density fronts because of the complexity of
including the ageostrophic terms.

In this paper we want to study the situation in which the same density surface has
two intersections with the same boundary (i.e. there are two fronts present). Such a
situation occurs whenever buoyant water forms a narrow current at the ocean surface
(away from coastal boundaries) or when dense water flows in a narrow stream ¢ ver the
ocean bottom under the influence of buoyancy forces. One such case is the flow of cold,
dense Norwegian Sea water through the Denmark Strait and along the sloping bottom
south of the strait (Worthington 1969; Mann 1969; Smith 1976). Coriolis forces are
able to inhibit any slumping of the buoyant fluid in the direction perpendicular to the
direction of flow and, at the same time, the presence of a cross-stream bottom slope
prevents the current from curving to its right. We show here that the presence of two
free streamlines, at the intersections of the density interface with the bottom on each
side of the current, gives rise to another mechanism for instability. This mechanism
operates even when only one layer of fluid (the current itself) is present, and i..stability
does not depend critically upon the details of the potential vorticity profile.

Because we are particularly interested in the possibility that a single layer of fluid
can be unstable, we consider a current flowing beneath a deep second layer which is
stationary and passive. We show that a long rectilinear current bounded by two free
streamlines and adjacent to a sloping (or horizontal) boundary is (almost) always un-
stable. Normal-mode perturbations with finite downstream wavelengths lead to the
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Q=4f¢ | % z

F1GURE 1. The configuration for the one-layer problem considered in this paper.

exponential growth of a combination of meandering and varicose modes.} This
combination leads to release of kinetic and potential energy from the original flow.
For a current with zero potential vorticity, the wavelength with maximum growth
rate is predicted to be 7-9 times the deformation radius based on the maximum depth
of the current, and the maximum growth rate gives an e-folding time of 0-57 rotation
periods.

For a general vorticity distribution, it is shown that instability will always occur
for sufficiently long waves whether or not the traditional Rayleigh criterion is satisfied,
provided only that the undisturbed relative vorticity does not vanish at points where
the flow velocity is equal to the phase velocity of growing disturbances. This kind of
instability relies upon a coupling between the two edges of the current. It is therefore
likely to continue to contribute to the energy release from sufficiently narrow currents
when there are two layers of finite depth and where baroclinic two-layer instability
may be important. Asa particularly useful example (and one that may give areasonable
description of oceanic and laboratory currents — at least up to the single-layer assump-
tion) we next consider flows with a finite but uniform potential vorticity and describe
the exact numerical solution of the eigenvalue problem. In this case the radius of
deformation and the current width are independent length scales. When all lengths
are non-dimensionalized by the deformation radius we find that the downstream length
scale of the most rapidly growing disturbance increases, while its growth rate decreases,
with increasing current width.

The very unstable nature of a current with two free streamlines is demonstrated by
laboratory experiments. A narrow current of buoyant fluid was produced at the free
surface of a deep lower layer by floating a layer of fresh water on top of a salt solution
between two axisymmetric cylindrical walls in a rotating system. When the walls were
withdrawn, gravitational collapse produced a narrow annular flow with approximately
uniform potential vorticity. Coupled disturbances, with a structure that was very
similar to that predicted, appeared on the two fronts when the initial half-width of the
current was less than twice the initial Rossby radius. The flow rapidly developed into

t+ It can also be shown that in the limit of very large downstream length scales variations of
current width will give rise to a purely meandering instability. This meandering mode will grow
linearly with time (Griffiths 1980).
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346 R. W. Griffiths, P. D. Killworth and M. E. Stern

a chain of anticyclonic eddies. The preferred downstream length scale of disturbance
was 7-4 + 1-3 times the radius of deformation for the state of geostrophic balance and
was independent of current width. For narrow currents the observed length scale and
structure of the instabilitics can be explained by the present theory, but the model
does not explain the instability that is observed when the | uirent is wide. In that case
a second mode of instability appeared to occur on each independent density front.
This second mode may well require an active second layer, or else it may be the mani-
festation of another unstable solution to the equations for a single-layer fluid. This
other unstable solution occurs on each front independently and will be discussed in
another paper.

2. The stability problem
Governing equations

We oonsider the configuration in figure 1, in which a fluid of uniform density p, lows
beneath an infinite fluid of density p, < p,, against a uniformly sloping bottom whose
(constant) gradient in the y-direction is —a. The undisturbed flow is taken to be
parallel to the x-axis. Assuming no flow in the upper layer, and that « is small enough
for the hydrostatic assumption to hold, the momentum and continuity equations are

U+ uu, +ou, —fo = —g'h,, (2.1)
ve+uv,+vo,+flu—U) = -g'h,, (2.2)
hy + (uh), + (vh), = 0, (2.3)

where (u,v) are the (z,y)-components of velocity, ¢ represents time, f is the Coriolis
parameter and g’ = g(p, — p,)/p, is the reduced gravity. The velocity U/, given by

U=gaf, (2.4)

is the constant x-component of flow induced by the sloping bottom and will often play
the role of a mean advecting current. Equations (2.1)-(2.3) imply that the potential
vorticity

P =f__+”z"“v (2.5)
is conserved by fluid columns. Hence, if the potential vorticity at any time is uniform
throughout the flow, we may write

f+ Vpy— Uy f
g = 170, (2.6)
where H, would be the uniform depth of the fluid when the relative vorticity is zero.

Let H be a typical depth of the undisturbed current (which, in examples, will often
be the maximum depth and will occur at y = 0). The flow is then characterized by the
radius of deformation (9’H)! f-! and the time scale f-1. Because we will be interested
in downstream (z) variations with some — usually large - length scale A, say, we define
a dimensionless wavenumber

€=2m(g’H)t/fA.
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Convenient non-dimensional variables are then defined by
z=a%Y g HRf, y=y*gHIf, (u,U)=@u*U* (g'H)l,}
v=v*(g’H}, t=1t*c1f-1, h=h*H,

and, in the case of uniform potential vorticity, H, = H5. Here the starred quantities
are nondimensional. Dropping asterisks, (2.1) and (2.2) become

ut+v(uy— 1) = (k+ iuS)z, (2'8)
el +ule, + 1)~ U = — (h+ je?),, (2.9)

while the continuity equation (2.3) retains its original form. In the special case of
flow with uniform potential vorticity, (2.6) becomes

(2.7)

u, — €20, =1—§,. (2.10)
The undisturbed flow

The undisturbed flow is taken as the steady solution of (2.8), (2.9), (2.3) with v = 0,
Then (2.98) reduces to the geostrophic relation

a=U-h
where the bars denote the basic flow whose stability is to be investigated. If the flow
has a uniform potential vorticity, (2.10) gives as an additional constraint the relative
vorticity

(2.11)

y?

(2.12)

_ h
U, = 1—5?.

As well as the case of general %, we shall consider two special cases in this paper,
both involving constant potential vorticity . (The Rayleigh criterion for instability
would need P, to change sign, so these cases would be stable by this criterion.) One
configuration is that of an infinitely long current (of dimensional width W) extending
from y = —L to y = L, where L = fW(g’H)}. The boundary conditions on (2.11),
(2.12) are then & = 0 at y = + L, and the solution takes the form

v

- __cosh (y/éf‘)] _ ; sinh (y/ 1)
h= ‘#[1 cosh (Lj#H))” "= U+t cosh (L/#Y) (2.13)

Thus the flow involves two length scales, L and 5. In the limit of zero potential
vorticity — the second special configuration — # — o, (2.12) yields %, = 1, and (2.13)
reduces to

E=1-%2 u=U+y. (2.14)
In this case the current widthisfixedat L = ,/2and the flowis described, in dimensional
terms, by the single length scale H.

The perturbation equations
We impose a small perturbation of the form (u’,v',%") = (7, ®, k) e'==t on the undis-
turbed flow (%, 0, 2). Then the momentum and continuity equations (2.8), (2.9), (2.3)
give the following linearized equations for the perturbation amplitudes.

(E—c) @+ (1—-7,)id = -k, (2.15)

12 FLM 117
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dh

f+ieMu—c)d = % (2.16)

Ia-i%(aﬁ)ﬂa—c)ﬁ =0. (2.17)

From (2.16) it can be seen that the downstream velocity perturbation is ageostrophic
at order €2. For currents with a uniform potential vorticity (2.10) gives the additional
ocondition that ¢

aa .

3y 0=~ (2.18)

In §3 we present a solution of (2.15), (2.17) and (2.18) for a very simple but illu-

minating problem - that with zero potential vorticity. In § 4 the system (2.15)-(2.17)
is discussed for completely general vorticity profiles. This discussion reveals the
influence, upon disturbances, of the cross-stream distribution of vorticity and of
asymmetric profiles. An exact numerical solution of (2.15), (2.17) and (2.18) for uni-
form potential vorticity distributions is then presented in §5, and compared with
laboratory observations in § 6.

3. Flow with zero potential vorticity
Solution of the eigenvalue problem

When the potential vorticity vanishes, # — oo and w%,—1 = 0. The longitudinal
momentum, continuity and potential-vorticity relations (2.15), (2.17) and (2.18)
become

(@—c)t+h =0, (3.1)

ﬁa—i%(al_z)+(i—c)ﬁ =0, (3.2)

———ie% = 0, (3.3)

where %, % are given by (2.14).
Elimination of & and # from the continuity equation (3.2) yields an eigenvalue
problem for the complex phase velocity c:

_‘i -d_& — 2t — (i — V214 =
dy(h dy) i — (-4 = 0. (3.4)

Because k( + L) = 0, this equation has singularities at the edges of the current, and
we wish to find the solution for which the eigenfunction 4 is regular at y = + L. From
(3.3) we see that di(L)/dy must be finite in order that 9 be finite on the free streamlines.
Therefore, when (3.4) is integrated across the current, we require

j "L (= (@—c)t]ady = 0, (3.5)

where L = /2.

t This condition may also be derived more formally by the requirement that the location of
vanishing depth remain a streamline.




.

SRR IR A X N LM DAL PN

Ageostrophic instability of ocean currents 349

In order to solve (3.4), (3.5), with a finite wavenumber ¢, ¢ and 2 may be expanded
in the power series
¢ =co+ec,+€%,+..., }

Uy) = uoly) + ey(y) +etus(y) + ...,
where the amplitude is normalized by requiring
2(0) = 1. (3.7)

Substitution of the expansions (3.6) into (3.4), and requiring that du,/dy be finite
aty = + L, where & = 0, shows that

(3.8)

du,

&= (3.8)
Hence the leading-order downstream velocity perturbation is independent of y.
From (3.7) we set u, = 1 and require that %,(0) = u,(0) = ... = 0. The eigenvalue ¢,

is given by (3.5), in which the leading-order terms imply

wf” Bi-@-cmdy =0.
-L

This is a quadratic equation for ¢, which, with % and % given by (2.14) and L = /2,
can only be satisfied by
00 = U. (3.9)

Thus normal modes are stable in the limit ¢ — 0, and are advected downstream at
speed U.

The terms of order ¢ obtained from (3.4) imply that du,/dy = 0, and, in order to
satisfy (3.7), this requires u, = 0. Equating the terms of order ¢2? obtained from (3.4)
yields an equation for the eigenfungction u,:

d (-du\ § .
5 ("%) -
where
@=u-U (3.10)

is the current velocity relative to its mean velocity U. By again applying the condi-
tions that du,/dy be finiteat k = 0and u,(0) = 0, we find the ageostrophic perturbation
u, = }y2. The condition (3.5) gives

L
2ch—f uy(h —a%)dy = 0,
-L

which yields the pure imaginary eigenvalues
¢, = +2i/{15. (3.11)

The positive root describes exponentially growing modes that are advected down-
stream at speed U. Disturbances with large but finite wavelengths are therefore un-
stable, even though the Rayleigh condition is not satisfied.

When the calculation is continued to higher orders in ¢ a pattern emerges, with
even-numbered eigenvalues heing zero (apart from ) and the rest imaginary. How-
ever, the power-series expansion reveals that the growth ¢[c] reaches a maximum at
a wavenumber only slightly less than unity, where the series converges slowly. In

12-2
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3 Fieure 2. Growth rate of normal modes with wavenumber € on a current with zero potential
:'] vorticity : , exact numerical results; ~ ~ —, first-order growth rate €%, given by the wave-
;i number expansion; - - - - - , Padé approximation based on terms up to O(c'%) in the expansion.
. order to investigate disturbances with ¢ ~ 1, it was necessary to solve (3.1)-(3.3)
numerically, using the Taylor system (Norman 1972). The solution was obtained by
3 integrating from y = L —y, where y = 104, with initial conditions obtained from an
o expansion of (3.1)-(3.3) near A = 0. The solution at y = 0 was found. The equation was
’ then solved again, beginning at y = — L+ ¥ and integrating to y = 0. The solutions
- for 2 were matched aty = 0 by scaling the solution from y = L —y; ¢ was then adjusted

iteratively to match €, (to an accuracy of 10-¢). Only imaginary eigenvalues ¢ were
N found and, ate <€ 1, these are identical with those calculated using the expansion (3.6).

3: On figure 2 the computed dimensionless growth rate ¢|c| is plotted as a function of
o the wavenumber (sclid line). This numerical result is almost identical to the curve
. (dashed line) that is obtained from the power-series expansion (3.6), which is here
) extrapolated to € > 1 by taking the Padé approximation based on the first six non-
il zero terms. The growth rate achievés ite maximum value at € = 0-80, which corres-
- ponds to a wavelength that is 7-9 times the Rossby radius. Wavenumbers greater than
0 ¢ = 1-1 yield only real eigenvalues and so are stable.

2
» The eigenfunctions
e Substitution of the individual functions u,, us, #g, ... into the longitudinal momentum
equation (3.1) and the vorticity equation (3.3) yields the depth and cross-stream

velocity perturbations respectively, for successive orders in €. Since the amplitude
of each perturbation quantity (u’,v’, #’) has the downstream dependence ei*(neglecting
the uniform advection velocity U), we write (ug, uy, ug,...) = (%g, %,, %y, ...) €%, and
similarly for v’ and 4’. Then the real parts of the eigenfunctions of lower order in ¢ are

ST P )

"y = cO8x, vy =ysinz, hy=—ycosz, (3.12)
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o Fioure 3. The structure of the zeroth-order eigenfunctions: (a) the first-order eigenfunctions;
{&) (from (3.16)) and the combination of these two modes; {c) for ¢ of order one and a flow with
"~ zero potential vorticity. The undisturbed flow 4 is linear with y.
.
e The nature of the zeroth-order eigenfunctions is sketched in figure 3(z). Because
;t'{ both the cross-stream velocity v’ and the undisturbed longitudinal flow % are anti-
» symmetric in y, the zeroth-order perturbation corresponds to a meandering of the
- stream. The corresponding depth perturbation is linear with y, so that the total depth
S profile % + kg remains symmetric and parabolic about the local midpoint of the current.
o The first-order cross-stream velocity ¢} is independent of position across the stream,
» but, because % = y, it corresponds to variations in the current width, as sketched in
2 figure 3 (b). This perturbation has an amplitude whose phase is 47 radians ahead of v;.
= The depth perturbation 4; is also independent of y, and therefore tends to maintain
et the symmetry about the midpoint y = 0. As a result of the form of A;, the depth
T increases uniformly at the widest section of the current and decreases at the narrowest
) section.

Higher-order eigenfunctions (such as vy and v3) have structures similar to those
already described, but tend to concentrate the amplitude of perturbations nearer the
] two free streamlines. When the perturbations sketched in figures 3 (a, b) are super-
imposed, noting the comparable amplitudesin (3.12) and assuming ¢ ~ 1, the structure
of the flow becomes that sketched in figure 3 (c). There is still a uniform reduction of
the current depth at 2 = }7 and a uniform increase at r = §7. When such a disturbance
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Fioure 4. Equispaced contours of the total depth %+ A4’ from the numerical solution for zero
potential vorticity, for ¢ = 0-8 and a depth perturbation of maximum amplitude 0-28 (chosen
for clarity). Regions of negative k+ A’ are hatched.

reaches sufficiently large amplitudes it is likely that regions of closed circulation will
develop within the deeper, broader parts of the stream, and such regions will be centred
about the midpoint of the flow. Figure 4 shows a plot of the contours of constant A
(the total depth of the current) for the numerical solution at ¢ = 0-8. The meandering
and variations of width are visible, along with a phase difference of }# radians between
the two edges of the flow. The widest sections of the current are also deepest, even
deeper than the mid-point of the undisturbed flow.

Energetics
The source of energy for the growing disturbances may be determined from the
structure of the depth and velocity perturbations. In order to calculate the energy
changes we consider small perturbations (u’,v’, ') to (2.8), (2.9), (2.3), where we revert
here to a general mean flow. Taking ku’ times (2.8), kv’ times (2.9), 2’ times (2.3), and
adding yields the local energy equation

R,y + (K, = 0, (8.13)

where the angle brackets denote an average in the z-direction and
E = }(h(w'* + e2v'?) + 1'2) (3.14)

is a convenient measure of the energy of the perturbations (kinetic plus potential).
As is well-known, interpretation of the local terms in (3.13) as kinetic and potential
energy transfers is dangerous. To avoid this, we integrate (3.13) to give

Y Ed - ki (u'v'yd 1
d_tf_L y=_f_L uu(“”) Y, (3.15)
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which shows that growing perturbations draw energy from the kinetic energy of the
mean flow. However, at the end of §4 we shall show that potential energy is also

For the case of zero potential vorticity the Reynolds stress term (u'v’) is evaluated
from (3.12) as

(W'v') = 7—1—256‘ +O0(eY), (3.16)

80 that, as K4, is positive in (3.15), the perturbations induce a positive Reynolds stress
which transports momentum across the stream. The superposition of meandering and
varicose modes with a phase difference of 7 therefore removes kinetic energy from
the mean flow. In general, though, it is not yet obvious that the right-hand side of
#.15) need be positive (and the flow unstable) for an arbitrary mean velocity profile.
This is the subject of § 4, where it is shown that indeed there must always be unstable
perturbations to any mean flow with two free streamlines.

4. The case of arbitrary mean profile
Formulation of the problem
We again consider a current such as that discussed in §2. This time, however, no
restrictions are placed on the depth profile save that X = 0 at y = + L. The perturba-
tion equations (2.15)-(2.17) are to be satisfied, while % and & are connected by the
geostrophic constraint (2.11), and we shall show that an unstable mode exists for
general depth profiles &.
For convenience, an integrated depth perturbation ¢(y) can be defined as

s =" hay (a.1)
= @ot+epy + ¥y +edlogeds + €3, + ..., (4.1a)
where tiie wavenumber expansion (4.1a) also holds for ¢, @ and 9, and
hy=0n (1=01,2.). (4.2)
The ¢, must satisfy some boundary conditions and, from (4.1), we have
Pa(~L) =0, (4.3)

where we may choose the magnitude of ¢, (— L) arbitrarily. Selecting for convenience
the value ¢,(— L) = —i(— L), we have

$oy( — L) = — (- L), }
¢ny(_L) =0 (n>0).

In addition, application of the continuity equation (2.17) at y = + L gives, since ? is
well behaved,

(4.4)

ud+(w—c)g, =0 (y=zL) (4.5)

In general the ¢, will have a boundary-layer structure of thickness ¢ at critical
layers (where 4 = 0), and an inner expansion, followed by asymptotic matching
across these layers, is necessary. The details of the inner expansion are not shown
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explicitly here, but are recorded in appendix B, which has been lodged with the
editorial office of the Journal of Flutd Mechanics, and will be used in what follows.
An alternative proof of the existence of an unstable mode, avoiding many of the
boundary-layer problems, is given in appendix A. However, that approach assumes
the existenoe of well-behaved eigenfunctions, while the expansion technique outlined
in this section explicitly finds such well-behaved eigenfunctions.

The expansions of (2.15)-(2.17) may be written symbolically as

(i—co)un+(l"ﬁy)"”n+¢ny+‘4» =0, (4-6)
Uy + B, = — Py (4.7)
hu, — (Riv,), + (% —Co) Py +C, = 0, (4.8)

forn =0,1,2,..., where 4,, B, and C, involve combinations of terms from previous
values of n with eigenvalues up to c,. Thus

(2— co)¢nw ¢,.,+B (% —co) — A
1—

1, = (4.9)
Substitution of (4.9) into (4.8), integration from —L to y, and multiplication by
(1—1u,)/h gives, remembering that A(— L) =

(“ co) ¢uw uv ¢ny + o(l_!) ¢n = —ZEV)J.iL (Z‘Bn - Cn) dy
- n(i - co) + An' (4 10)

Equations (4.9) and (4.10), with boundary conditions given by (4.4) and the expan-
sion of (4.5), form an cigenvalue problem for each ¢,. One particular solution, which
couples the two free streamlines together, was isolated in §3 for the special case of
zero potential vorticity, and we now examine the corresponding solution for the
general case. We show that, except under very special conditions, the mode is always
unstable.

Solution up to order ¢?

To leading order, 4, = By = C; = 0, and, from (4.10), and (4.9), ¢, and v, satisfy

co—U)(1—u
h

(a—co)¢07v—ﬁy¢0y+( VVV)¢0= 0, (4.11)

vy = 8= Col) ¢ow %o (4.12)
The set (4.11), (4.4) and (4.5) pose an eigenvalue problem for ¢, which may have many
solutions; no indication has been found of whether or not ¢, can be complex. However,
we choose here to examine a specific solution to (4.11) in which ¢, is real, and show
that to next order c is complex. We choose the solution

co=U, @o=h, wo=1u, ug=1, hy=U-—u=—1, (4.13)

80 that, to leading order, the disturbance is simply propagated downstream at speed
U. We see that, in general, u, and k, are real, while v, is imaginary, implying that «’
and A’ have phases which are }7 ahead of v'.
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The O(e) terms have 4, = —c, %y, B, = 0 (i.e. the along-stream flow remains geo-
strophic), and C; = —¢, ¢,,. Then (4.10) becomes

, a¢lyv_ u, ¢ly +¢, =0, ' (4.14)

and (4.4) gives the conditions ¢, = ¢,, = 0 at y = — L, while the condition (4.5)

f: gives no information to this order. Now (4.14) has two independent solutions, one
’,} with ¢,, proportional to #, and one with
79 / . v d.
iy Py = —cn'“j 5% (4.15)
" Consideration of (2.11) shows that & must vanish at least once in the interval (— L, L).
W The places where @ vanishes are the critical layers for this solution. We shall treat
. the case of one such layer (at y = y.), but the extension to several layers is immediate.
:g We shall also assume that %,, (we denote values at the critical layer with a suffix ¢)
: :; is non-zero. (In the extreme case of # vanishing quadratically, rather than linearly,

. at a critical layer, it can be shown that the solution is stable. Physically, there is
stability if the vorticity %, vanishes when @ vanishes.)

L The solution (4.15) is well-behaved as # approaches zero only if %, is zero (as

:3- would be the case for all symmetric depth distributions, for example); otherwise the
5 solution contains logarithmically growing terms. In either case, a matching across

Y the critical layer is necessary. We therefore write
N bi=-af amar| s w<y (4.16
. =—c @ T < Ye), .

/ S I I G A ’
e v v dE
35 = —aﬁ—cf 7} dJ. — > 4.17
;ﬁ 1 ﬂ 1 +Lu(”) ” +L[ﬂ(g)]z (y yc)’ ( . )
~.3~. where «, # are unknown constants, and the boundary conditions on (4.14) have been
_ used to give (4.16). To match across the critical layer, we shall necd the behaviour of
0 @i neary = ye.. Writing 9 = y—Ye, We have
ot 1
:‘:_: ¢ ¢lo + P "7 + ;_:vc 7]’ (log n-= %) gcluyc” ‘f uz 3’“,0
. + e "”° log (— 8)} -—‘u"s”?’ (7 <0), (4.18)

Ugo Uye

. ne+é d. 1
a Bt ~ Blot =+ Ja 4 S0 A3 s (log  — §) ~ oy By U =+ 5
) Uye ,,e
» + "”°log8} e L W%;z (n >0), (4.19)
e e iy

where & > 0 is a small positive number. The expression log ( —48) is to be interpreted
as log é + i7, and from the inner expansion it is found that this must be

log & —imsgn (u,,).

L At O(e?) in (4.6)~(4.8), A = — ¢,y —Cattg, B, = @2 and C; = — ¢, @y, ~ €3, Hence
s the flow becomes ageostrophic at this order. Then from (4.10) ¢, satisfies

. _ 1—u, (v . . ¢, (1—u,) .
u¢2vy_uy¢2y+ ﬁ u[ huzdy+u3—cl¢lyu+c2+l(_z_y¢l=Ov (4°2O)

together with ¢ = ¢y, = 0,y = — L.
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The ocondition (4.5) at y = + L yields the same result as requiring ¢, to be well-
behaved in (4.20) when & vanishes, namely

e (L) = - J‘ :Iﬁ’dy. (4.21)

The results of the asymptotic matching are straightforward, with ¢,, ¢,, being con-
tinuous at y = y., the y*logy behaviour being handled by the inner expansion, and
the well-behaved part of ¢,,, being continuous at y = y.. We now match the O(»*)
termsin the expansions (4.18), (4.19) for ¢, to find the coefficient a introduced in (4.17):

ford—»0
[T e

The term in brackets is well known to be the Hadamard *finite part’ of the (divergent)
integral of #-3, and is a well-defined negative quantity. Its value is that of a naive
integration of #-? from —L to + L, cavalierly ignoring the singularity at y., and
simply substituting the end values + L into the integration.

Having an expression for the constant a, we can now evaluate ¢,(L) and then make
use of (4.21) to find the eigenvalue ¢,. First note that ¢, is continuous at y., so that

o= ([ Y

— Vc—‘ -~ -~ _ L -~ L dﬂ
= "‘L d-"“f [a(n)lﬁo“”*f.m““d-" "‘f.c“"”“ vors BT
(4.23)

Using the geostrophic relation (2.11), integrating (4.23) by parts, and substituting
for « from (4.22) gives, for small 8,

N I Lt I ) 2hc inu ,71' 6 .,
¢1(L) - cl ( _ + vo+d ug y 3 t’ I" (4--'”
=-¢,Fp f '"“ ,"" e (4.25)

where we use the notation Fp to denote the finite part of the integral. Then (4.21)
gives, finally,

L
f his dy
-L

I— — .
ij hi-2dy —sm, b/ |, |2
-L

= (4.26)

(For several critical layers, the last term in the denominator becomes a sum over all
critical layers.)t

If %,,., the gradient of relative vorticity at the critical layer, does not vanish, then
(4.26) gives c} as complex, and so there exists a mode with #(c,) > 0, and there is
instability. If %, , does vanish, it is easy to see that the finite part of the integral is

t+ The formula (4.26) has been confirmed by numerical integration of (2.15)- (2.17) for specific
asymmetric profiles.
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negative.t Hence ¢, is only imaginary and the positive root of (4.26) gives an un-
stable mode. We have therefore proved the existence of an unstable wave mode for
all distributions of depth, except in the unusual case when 7, vanishes at a critical
layer. The above analysis even holds in the zero-potential-vorticity case (§3) despite
the fact that 1 -, in (4.12) then vanishes identically. The expression (4.26) reduces
to ¢} = — % in that casc, in agreoment with the analysis in § 3.

Energy transfers

The energetics of currents with arbitrary velocity profiles are easily evaluated. We
have (outside the critical layer, which has a negligible extra contribution) the Reynolds
stress

(w'v') = §R(upv3) + feR(upvf +uy13) + 0(e?), (4.27)

where the asterisk denotes complex conjugate. Using (4.13), the zeroth-order terms
cancel. The first-order perturbation eigenfunction can be found from (4.18) and gives,
after simplification,

R(uovl) = U, R(ic, +iPy,)s (4.284a)

R(u,v5) = R(— 133, ¢y, +1cy), (4.283)
whence

u'v') = — decy(1+7%,) + O(e?), (4.29)

where ¢,, is the imaginary part of c,. Then (3.15) yields
d (L L __ _ g
d—if-LEdy = ‘}ecnf_Lhuy(l—uy)dy+O ) (4.30)
and, after use of (2.11),
d L L _ -
—=| Edy = }ec, (hus +R3)dy > 0.
dtj -1 -L

Hence the perturbation energy isindeed growing with time (as it must for exponentially
growing modes).
Finally, we note that the perturbation mass (i.e. heat) transfer across-stream is
given by
V'R = Yec,, 4. (4.31)

In the problem of §3 (and also in § 5), the sign of (4.31) is such that the mass flux is
directed outwards from y = 0. The further significance of {¢'A’) appears when we form
an expression from the continuity equation (2.3) for the rate of change of mean poten-
tial energy }<k)?, where again b = h+h':

S AR HRR, = 0. (4.32)

t This is best seen by considering the sign of ¢,, in (4.16). (4.17). If & vanishes only once, for
simplicity, 4 is negative for y < y, and positive for y > y.. Hence (4.15} and (4.22) show that
@105 ! is positive fory < y. and fory > y.. so that ¢,(L) is a positive multiple of ¢, in this case.
Then (4.21) implies that c, is purely imaginary.
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4

d (& L .
: f ROLEE f ~ KKy
L
= -}ecuf itdy < 0. (4.33)
~L

In other words, release of mean potential energy is also necessary during the growth
of the unstable mode discussed here. However, after a little algebra it may also be
shown that the tofal potential energy, given by the integral of (}(h)*+§(h'®)), is
invariant. Conservation of total energy (kinetic plus potential) thus implies that total
kinetic energy is also invariant.

S. An example: currents with uniform potential vorticity

The results in §4 can be applied to any particular distribution of vorticity. They
show that (almost) all currents of the form sketched in figure 1 are unstable to a wave
mode whose growth relies upon a coupling of the two free streamlines, and the general
analysis gives useful physical understanding,of the flow. However, the expansion
about small wavenumber is not suitable for describing the most rapidly growing mode,
which is that likely to be observed in laboratory experiments. We therefore present
exact numerical solutions of the eigenvalue problem (2.15)-(2.17) for one particular
case: that of ourrents with a finite and uniform potential vorticity J#-1, for which
the undisturbed flow is given by (2.13). The current is now also assumed to be flowing
over a horizontal plane, so that the advection velocity U is zero.

For both the numerical solutions and comparison of these with experimental results
it is much more convenient, when there is a uniform potential vorticity, to modify
the original non-dimensionalization (2.7). By using the ‘ potential vorticity depth’ Hy,
rather than the maximum current depth H, as a depth scale, one of the two length
scales L and S can be eliminated from (2.13). Thus we define a new dimensionless
wavenumber & and a current width L, by

A T T gH)Y

k — wi =27 (Q'Ho)* L L fW

(5.1)
and similarly rescale current depth and velocities using H, instead of H in (2.7). The
potential vorticity J#-! can be expressed in terms of the current width L by using the
definition A(0) = 1 in (2.13), whence

=g

5.2
cosh Ly’ (5.2)

If Ly~ 0, we approach the limit of zero potential vorticity #—! = 0, while a very
wide current, L, - o0, implies that # -1 — 1. In these new variables the undisturbed
flow becomes

Feie coshy i sinhy

cosh L’ cosh L’ (5.3)

The momrcntum and continuity equations (2.8), (2.9) and (2.3), as well as the pertur-
bation equations (2.15)-(2.17), are all unchanged except that ¢ is replaced by k.
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b Fioure 6. The computed wavenumber kg(a) and growth rate knle|(b) for the most rapidly
, growing mode on a current with uniform potential vorticity, as functions of the current width
T Ly = /W/(g’H.,)*. In (a) the wavenumber €, which is non-dimensionalized by the Rossby
A radius based on the maximum depth H, is also plotted (broken line).
" Numerical solutions {J
‘¥ The perturbation equations (2.15)-(2.17), with k replacing ¢ and with the undisturbed ‘
e flow defined by (5.3), have been solved using a numerical approach similar to that |
L described in §3. The solution was first computed for a range of values of the wave-
- number k and a number of values of the width L,. As for the case of flow with zero
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potential vorticity, the eigenvalues are all found to be pure imaginary. Hence the
normal modes are unstable and are again advected downstream at speed U.

For each value of L,, the dimensionless growth rate k|c| increases with increasing
wavenumber at k& € 1, but reaches & maximum and decreases rapidly at sufficiently
large wavenumbers. The wavenumber kn at which the maximum growth rate is
achieved was found by solving the equations at successively intermediate values of
k near the maximum of the growth-rate curves. Resulting values of km are shown on
figure 5(a). The most rapidly growing waves are relatively long (¥m < 1) when the
current is ‘wide’ (L, > 1), and they are short (with ky > 1) when the current is
‘narrow’. More quantitatively, kn satisfies the relation km ~ 1-1Lg! approximately
for Ly < 2, but decreases much more rapidly with increasing L, when L, > 2. On
figure 5(a) we have also plotted ey (broken line), which is the dimensionless wave-
number (with maximum growth rate) based upon the length scale (3’ H)}f~1. The two
wavenumbers are related through L, by combining the definition k = e} with (5.2).
(The two are significantly different at small values of L,, where the current depth H
differs moreradically from the ‘ potential-vorticity depth’ H,.) As L,-» 0, e approaches
an upper limit of ¢m = 0-8. This limit corresponds to flow with zero potential vorticity,
and the wavenumber is the same as that found in §3. At L, > 1, on the other band,
H - H,, so that em and km become identioal. The most rapidly growing mode then has
a wavelength that is very much larger than the Rossby radius (g’ H)t f-1.

On figure 5(b) is plotted the growth rate km|c| of the most rapidly growing mode as
a function of the current width L,. For small values of L, this growth rate approaches
the maximum growth rate previously computed for normal modes on a current with
zero potential vorticity (see figure 2). However, the growth rate decreases exponen-
tially when the current width is increased beyond L, = 1. At L, = 2 the growth rate
km|c| is an order of magnitude smaller than it is at L, = 0-5, giving an e-folding time
(km|c|f)-1 of eight rotation periods.

The rapid decrease of growth rate with increasing current width is predicted by the
wavenumber expansion of § 4. For a current of the form (5.3), the general results (4.26)
for the first-order eigenvalue reduces readily to

2L,
2 - -2 - 2 e ——0
i $(cosh L) [l §tanh?L, Snh2 Lo] . (5.4)
Here, ¢, is imaginary for all values of L,, but its magnitude decreases exponentially
at large Ly: ¢, ~ +i(})texp(—Ly) (Ly > 1). It can also be shown that there are no
other long-wave solutions for the case of constant potential vorticity.

The structure of growing disturbances

Examples of computed depth and velocity perturbations for a current with uniform
potential vorticity are shown in figure 6. In this case the width was L, = 1 (giving
a potential vorticity #-1 = 0-35) and the amplitude £ of the depth perturbation was
set at 10~1. Figures 6(a, b) show contours of the total depth A+ 2’ and depth pertur-
bation &', respectively, while figure 6(c) shows contours of the cross-stream velocity

t Note that use of the wavenumber-expansion technique discussed in §§3 and 4 will not
allow us to approach the limit of zero potential vorticity (M - oo} at any finite value of ¢,
since we would require k = et g1 (but of course this is no deterrent to a numerical solution).
Thus we cannot simply let L, -» 0 (analytically) to recover the zero-potential-vorticity case.
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Fiqure 6 (a,b). Legend on p. 362.

perturbation v’ for the same most-rapidly growing disturbance. As predicted by the
wavenumber-expansion technique (§§3 and 4), the perturbation involves both a
meandering and a longitudinal variation of current width. There is a phase difference
of }m radians between k' on the two free streamlines, and the greatest cross-stream
excursions of the centre line occur at x-positions very close to where |0L,/ox| is
greatest.

From figure 6 it can be seen that the depth perturbation and, similarly, the pertur-
bation energy (as indicated by v') are confined more closely to the edges of the current
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F1GURE 6. Contours of (a) the total depth %+ 4’, (b) the depth perturbation’k’, and (¢) the croes-
stream velocity perturbation v’ for the most rapidly growing mode on a current with uniform
potential vorticity and L, = 1. The solution in (g) is for a depth perturbation of amplitude 0-1.

Regions of negative values are hatched.
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FIGURE 7. A sketch of the laboratory apparatus in vertical section. The cross-hatching indicates
the upper layer of fresh, dyed water inside the annulus and the deep lower layer is a NaCl

solution.

(even for L, = 1) than was the case for perturbations on currents with zero potential
vorticity. From the power-series solution presented in §4 the leading-order eigen-
functions (4.13) reduce, for constant potential vorticity, to the simple forms

v = coshy
° "~ cosh Ly’

sinhy

ho = =t = —m.

Am et elat e el et e A A

(5.5)

[ -

R R R SR TP WAL WS MK SR S e




.
4, V8%,
4%

P B
CLNARS M RV}

222400

7y

[

T DN S N P LN DR

2 atetateta

Ageostrophic instabilily of ocean currents 363

The hyperbolic functions at this and higher orders tend to coneentrate the perturba-
tion energy into regions closer to the two free streamlines. This is where the basic flow
has the greatest depth variation and a concentration of relative vorticity:

—du/dy = — coshy/cosh L.

The concentration of perturbations near the fronts is much stronger for wider currents,
flows for which the vorticity %, at the centre line is much smaller and for which we
know that the disturbances grow much more slowly.

Hence our restriction that the flow has a uniform potential vorticity results in a
coupling between the two free streamlines that becomes very much weaker as L,
becomes larger. On the other hand, it must be remembered that currents with more-
general vorticity distributions are able to be much wider than the Rossby radius based
on the fluid depth H while still having a more uniform distribution of relative vorticity,
thus making larger growth rates possible for wide currents.

6. Laboratory experiments
Apparatus

Currents with an approximately uniform potential vorticity and which were bounded
on each side by a well-defined density front were produced in a rotating container.
In order that the flow be initially uniform along the current, an axisymmetric con-
figuration was used. The free surface of a relatively deep lower layer of dense fluid
then served as a horizontal (geopotential) surface on which the current flowed. This
also greatly reduced the influence of friction below that which would be induced by
a solid boundary. The depth of the lower layer of sodium chloride solution was, in
most experiments, either 28 cm or 40 ¢m. A large annulus with a relatively narrow
gap between its walls was partially immersed in the lower layer, as sketched in figure
7. The annulus was suspended from above and held concentric with the vertical axis
of rotation of the container and stationary in the rotating frame of reference. Three
different annuli were used. One had an inner radius of 19-8 cm and an outer radius
of 23:8 cm, leaving a gap of half-width W, = 2:0 cm. The others had mean radii of
20-0 cm and 21-5 em, with half-widths W, = 3-9 cm and W, = 3-5 cm, respectively.
The outer wall of the rotating container was at a radius of 45 cm.

After the salt solution had come to the desired rotation rate Q = }f, dyed fresh water
was carefully floated onto the free surface inside the annulus to form the shallow upper
layer of depth H, shown in figure 7. The system was then left for at least 30 min to
reach solid-body rotation everywhere. The depth H, could be determined both by
observing a vertical scale horizontally through the Perspex walls and by measuring
the voluine of upper layer fluid placed in the annulus. At a time ¢ = 0 the annulus
was carefully drawn vertically upwards and removed. The subsequent flow was made
visible by the dye in the upper layer and small pellets of paper floating on the free
surface. Photographs were taken with a camera mounted in the rotating reference
frame and time exposures of about one-half of a rotation period were used to obtain
streaks. Such streaks, as well as direct observations, revealed no motion before the
annulus was withdrawn. Values of the Coriolis parameter f ranged from 0-38 5! to
2:5 571, while the reduced gravity ¢’ lay in the range 0-2 < ¢’ < 12 ¢m s-2. The initial
depth H, of the upper layer was always between 4 and 6 em. This gave a ratio of layer
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/

F1GURE 8. Streak photographs showing four stages in the cvolution of a laboratory current
with W, = 2-0cm, f = 17781 and &, = 1-18 (4 5 cxposures). Times after withdrawal of the
annulus are (in number of revolutions): (i) ¢t = 2; (ii) 4; (iii) 6; (iv) 8. The ratio of layer depths
is 0-17. Concentric circles on the bottom of the tank have a 5 cm spacing.

depths in the range 0-1-0-16 or in the range 0-16-0-2 when the lower layer was 40 cm
deep or 28 cm deep, respectively. However, some experiments were also carried out
with shallow lower layers in order to observe the influence upon the flow of the lower
boundary. In these cases the initial ratio of layer depths was between 0-8 and 0-9.

Experimental observations

When the annulus was removed, the buoyant upper-layer fluid first spread radially
toward and away from the axis of rotation by a distance that was measured to be
close to the Rossby radius (g’ H,)t f-1. This collapse brought the flow into an approxi-
mately geostrophic balance (described by (2.11)) within a time scale of order f-. An
anticyclonic (clockwise) flow is produced in the outer half of the upper layer and a
cyclonic flow in the inner half, while any motion in the deep lower layer can be neg-
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lected. The axisymmotric geometry requires that both potential vorticity and angular
momentum be conserved by the fluid in each layer during the collapse and that there
is a balance between the buoyancy, Coriolis and centrifugal forces in"the final state.
The ratio of centrifugal and Coriolis accelerations is given by @/fr ~ (g’ Ho)t/fR,
where R is the radius of the annulus. For most experiments this parameter was less
than 10-1, but it reached 0-2 for experiments with large Rossby radii. Therefore the
geostrophic basic flow assumed in the analysis in previous sections is only approxi-
mately realized.

Even before the geostrophic collapse was complete, rapidly growing billows
(believed to be Kelvin—-Helmholtz billows) with length scales of the order of 2 em
appeared on each edge of many of the currents. However, these disturbances also
dissipated rapidly (often before the first photograph could be taken), presumably
mixing some of the fluid near the fronts, and the current again became axisymmetric
for a time. Later, but always within two or three revolution periods, disturbances
with much larger downstream length scales appeared on the otherwise uniform fiow.
Subsequently, the current always broke up into a chain of eddies within five to ten
revolutions.

If we assume that the deep bottom layer is stationary and that there is no mixing
between the layers during the collapsing phase, then the laboratory current is described
by the two dimensionless parameters fW,/(g'Hy)* and W,/H,. In order to relate the
parameters before and after the initial collapse, we write W, = 4/2H,, where 4 is the
cross-sectional area of the current, and define

LA fA
Py = = . 6.1
’ (Q'Ho)‘ 2Ho(9'Ho)* @1

By integrating the hyperbolic depth profile (5.5), the area 4 can be found in terms of
L, = fW/(g'H,)t (where W is the half-width after collapse). Then (6.1) gives

Lo = Ly—tanh L, (6.2)

Then the final width Ly - 0 when &, - 0, while L, ~ Z,+ 1 when ¥ > 1.

In figure 8 are shown four stages during the evolution of a current that was formed
when theinitial Rossby radius wasequal to the half-width W, of the annulus (£, = 1-18).
In (i) the flow is largely axisymmetric and the relative vorticity is distributed through-
out the width of the cusrent. In (ii) the streaks reveal that regions of closed anti-
cyclonic circulation havie appeared near the centre line of the current. The fronts
(edges of the dyed fluid) also reveal a wavelike structure. There appears to be some
meandering away from the initial centre line as well as variations in current width.
Both become more obvious in (iii}, where the flow appears to be qualitatively very
similar to that sketched in figure 4(c), except that at this large amplitude there are
closed circulations within the deeper sections of the current. In this case there are
nine or ten waves around the annulus. In (iv), individual eddies have broken off from
their neighbours and the flow become a broad region of anticyclonic eddies. These
subsequently decay very slowly due to friction.

In figure 9 is shown a similar sequence in the evolution of a current for which the
initial Rossby radius was 1-56,, (¥, = 0-74). Frame (i) again shows an almost axi-
symmetric flow. However, small ‘cat’s-eye "-shaped disturbances are alrcady visible
near the centre line (y = 0). Only one revolution later (ii) these disturbances influence
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Fioure 9. Streak photographs showing the evolution of a laboratory current with W, = 2:0 cm,

f = 1118} and ¥, = 0-74 (48 exposures). Times after withdrawal of the annulus are (in
number of revolutions): (i) ¢ = 3; (ii) 4; (iii) 6; (iv) 8. The ratio of layer depths is 0-17.

the whole flow. In this case there are seven waves around the annulus and both the
varicose and meandering nature of the flow is visible. In (iii) and (iv) the anticyclonic
eddies again develop and break up the current.

For contrast, figure 10 shows the evolution of a current that is much wider than
the Rossby radius (Z, = 4-0). As for the experiments shown in figures 8 and 9, the

P— initial ratio of layer depths is 0-17. In this case disturbances could be seen first at the
" edges of the current (i) and rapidly grew in amplitude to take the form of waves that
N ‘break’ on their upstream side (ii). The two fronts then appear to behave indepen-
) dently. Vortices of opposite sign develop in the lower layer behind each ‘breaking’
3 crest (iii) and can lead to the formation of vortex pairs at each edge of the flow. The
- resulting turbulent current is shawn in (iv). When the ratio of layer depths was less
: than 0-2 this apparently two-layer flow occurred for all currents with ¥, > 2.

For large depth ratios, the transition between the two kinds of behaviour oecurs
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F1aure 10. Streak photographs showing the evolution of a laboratory current with Wy = 3-8 em,
J = 28785 'and £, = 4-0 (4 8 exposures). Times in number of revolutions after withdrawal of
the annulus are (i) t = 3; (ii) 4; (iii) 6; (iv) 12, The ratio of layer depths is 0-17.

near ¥, = 1. Figure 11 shows two stages in the evolution of a current with &, = 1-:07
and a ratio of layer depths 0-84. The disturbances still appear to be dominated by a
coupling between the two density fronts. The waves do not ‘break’ and no cyclonic
eddies develop in the lower layer. On the other hand, when £, = 3-7 and the depth
ratio is 0-9, each edge behaves independently. This case is shown in figure 12, where
the initial axisymmetric current develops small-scale breaking waves on each edge.
In each experiment the number n of waves that appeared around the annular
current were counted.t This wavenumber increased linearly with &, for each annulus.
The wavelength was then calculated from A = 2aR/n, where R is usually the mean
radius of the annulus used. For ‘wider’ currents (#y > 2), though, there was a smaller
number of waves on the inner edge of the current than on the outer edge. However,

t Measurements of wavelength were always taken after the disappearance of any small-scale
Kelvin Helmholtz billows if the two length scales were distinetly separated.
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l- Fioure 11. The evolution of a laboratory current with a shellow lower layer. W, = 2-0 cm,
t S = 1-448-1, &, = 1-07 and the ratio of layer depths is 0-84. Times in number of revolutions
\ after withdrawal of the annulus are (i) t = 2; (ii) 4.
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Ve

(ii)

(iii) (iv)
Fioure 12. The evolution of a laboratory current with a shallow lower layer. W, = 3.9 cm,

J = 17781, ¥, = 3-7 and the ratio of layer depths is 0-9. Times in number of revolutions after
withdrawal of the annulus are (i) ¢t = 1; (ii) 3; (iii) 5; (iv) 8.

using the appropriate radius of each edge after the initial collapse yielded two very
similar wavelengths. A more serious problem at large ¥, was that the wavelengths
increased with time, and this may be due to a similarity of the scales of Kelvin-
Helmholtz and rotationally dominated disturbances.

The dimensionless wavelength fA/(g’ Hy)t iz plotted on figure 13, where the symbols
indicate the annulus width and ratio of layer depths. Where the wavelength increased
with time the two detectable extremes are plotted and connected by a vertical line.
The computed wavelength 27/kn (from figure 5b) is also plotted and the upper scale
of the figure shows the current width L, after collapse as given by (6.2). For &, < 1
(Lo < 2) the observed wavelength increases slowly with £ in roughly the same way
as does the computed wavelength, but is almost a factor of two smaller. At &, > 2
the observed instability has a roughly constant length scale, while the computed
wavelength for the one-layer instability then increases rapidly with current width.
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Fioure 13. The observed dimensionless wavelength (based on the Rossby radius before geo-
strophic adjustment) as a function of the initial width of the current, £, = f W,/(g'Hy)}. Data
indicate the annulus used and the ratio of layer depths: @, W, = 2-0 cm and depth ratio
< 02; O, W, = 3:5 or 3-8 cm and depth ratio < 0-2; x, depth ratio 0-8-0-9. The upper scale
is the width L, after geostrophic adjustment (calculated from Z, and (6.2)) and the computed
wavelength 27 /k,, is plotted on this scale.
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The growth rates of the observed disturbances are difficult to quantify because
their appearance and growth at very small amplitude is poorly defined. However,
their appearance within one to two revolutions after the annulus was withdrawn
implies a growth rate |kc| ~ O(4 x 10-2). This lower limit is consistent with the
computed growth rate on figure 5(b) for £, < 1. A more clearly defined time scale,
and one that is of importance in oceanographic observations, is the period required
for the axisymmetric flow to break up into isolated eddies whose circulations have
pinched off from their neighbours. For those experiments with layer-depth ratios less
than 0-2 this time scale was always close to 5 or 6 rotation periods, but it was as small
as three revolutions (at Z, ~ 1) when the depth ratio was large.

Discussion of the experimental results

The data on figure 13 are presented again on figure 14, along with the computed wave-
length 27 /em for the most rapidly growing mode described in § 5. However, this time
the wavelengths are normalized by the Rossby radius based on the maximum depth
H of the current after its collapse to geostrophic balance. This depth is calculated from
(5.2) after finding the balanced width L, from (6.2), and assumes that the initially
uniform potential vorticity remained after the collapse. To well within the scatter
of the data, the measured wavelength A is a constant multiple of the Rossby radius:
fAJ(@H® = T4 £ 1-2.

For #, < 2 we have already described the qualitative appearance of the growing
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Ficurk 14. The data of figure 13 but with the wavelength renormalized using the calculated
Rossby radius in the state of geostrophic balance (assuming conservation of potential vorticity).
The data have a mean of fA/(y'H)} = 7-4+ 1-3 (broken line), which corresponds to the wave-
number € = 0:85+ 0-15. The computed wavelength 27 /¢, for the coupled mode on a current
with uniform potential vorticity is also plotted (solid line). The dotted line shows the computed
wavelengilh (against the upper scale) of the coupled mode with maximum growth rate for the
profile (6.3), which has a varying potential vorticity. The dashed line is the computed wave-
length of the mode attached to a single front for the same profile (6.3).

disturbances, and, for a sufficiently deep lower layer, this appears to be identical to
that predicted for the one-layer instability. The two edges of the current couple to-
gether and give rise to both meandering and varicose structures which are }7 radians
out of phase. The growing disturbances are stationary and large anticyclonic eddies
develop from the wider and deeper sections of the wave. The computed and observed
growth rates are also consistent with each other. On the other hand, no rapid change
of growth rate with current width L, could be detected, and the measured wave-
lengths are smaller than those predi-ted. These discrepancies we attribute largely to
the simultaneous instability of at least one ot’.er mode, a mode which becomes domi-
nant only at larger current widths (#, > 2), and which appears to have alength scale
close to 27 deformation radii and growth rates of order 10-2-10-1. This mode is
discussed below. There are also a number of other factors that may possibly influence
the observed wavelength at % < 1. First, the formation of a ‘narrow’ current in our
experiments requires that the upper layer have a large Rossby radius of deformation,
which means that the collapse to geostrophic balance involves an exter sive, rapid
spreading of the buoyant fluid, leaving a rather shallow vurrent. Both mixing by
Kelvin-Helmholtz billows (which could be clearly seen in ciné films) and frict.». may
then affect the vorticity and current depth throughout the width of the undisturbed
flow. Alteration of the potential vorticity profile can in itself lead to only small changes
in the most unstable wavelength at Ly < 1, as the behaviour must then approach the
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same limit of zero potential vorticity. To illustrate this with a quantitative example
we have chosen the convenient (but otherwise arbitrary) depth profile

| 1-%%‘2”0, (6.3)

and computed the wavelength and growth rate of the most unstable mode that
couples the two edges of the current. This wavelength is plotted on figure 14 (dotted
line), while the dimensionless growth rate is somewhat greater than that found for the
uniform potential vorticity profile (kc; = 0-21 at L, = 1).

Another result of the dissipation of vorticity during the collapsing phase is & small
reduction of the current depth H. This would imply that we have underestimated the
value of the observed dimensionleas wavelength fA/(g’H) on figure 14 (and similarly
overestimated the predicted wavelength on figure 13). Other factors that we have
neglected are non-zero perturbation velocities in the finite lower layer and interfacial
friction, both of which may have a direct influence upon the energy balance in the
growing disturbances.

The two edges of the current are again strongly coupled when %, < 1, and the ratio
of layer depths is close to one. However, the structure of disturbances is different from
that at small depth ratios, with the current showing less tendency to meander, and
the growth rate is noticeably greater. In this case, the lower layer cannot be considered
stationary, since its depth changes significantly during the collapse to geostrophic
equilibrium. Conservation of potential vorticity implies that the fluid velocity in this
layer is in the opposite direction to that in the upper layer, and this must be expected
to influence the form of the coupling between the two density fronts.

At #, > 2, with all the depth ratios used, the collapse to geostrophy has little
influence upon the fluid near the centre line. Under these conditions we observe a
clear qualitative difference in the instability. Each front is observed to behave inde-
pendently and develop waves, which have a length scale determined by the Rossby
radius. Furthermore, the growth rate of the coupled, one-layer instability at £ > 2
is predicted to be more than an order of magnitude smaller than at &, = 1,1 while
the length scale is predicted to increase exponentially with &,. Hence we conclude
that another mode of instability is present for £, > 2. However, we are uncertain of
the nature of this second mode. There are two possibilities: it may be a mode in
which the second layer and the lower boundary play an important role, or else it may
be another unstable mode (other than the one discussed in this paper) that is described
by the single-layer equations (2.15)-(2.17).

The particular solution to the perturbation equations (2.15)-(2.17) that is discussed
in §§ 3, 4 and 5 has the leading-order phase velocity ¢, = U, and represents an unstable
coupling of the two free streamlines. However, we find numerically that there can be
other unstable solutions with larger wavenumbers than those for the coupled-front
mode. Although these other modes are not yet fully understood, we do know that
each is concentrated close to one of the free streamlines and, to be unstable, requires
a non-zero gradient of potential vorticity. Since the laboratory currents do involve a

+ The expression (4.26) shows that a decrease of the growth rate should be expected for any
profile that becomes steadily flatter near the critical layer; the argument is not limited purely
to constant-potential-vorticity profiles.
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variation of potential vorticity near their edges (due to mixing and friction), the one-
layer model might therefore be able to describe the observed mode of instability for
wide currents as well as the coupled mode observed for narrow currents. For the
particular profile (6.3), which was chosen as a relatively simple variation on the profile
(6.3) and which has a varying potential vorticity, numerical solutions show that the
wavelength of the new frontal mode with maximum growth rate is a constant multiple
of the Rossby radius. This result is plotted on figure 14 (broken line), where the pre-
dicted wavelength can be seen to be much smaller than those observed. However, it
may be that the preferred length scale is determined by the width of the region of large
shear at the current edge. Thisin turn is determined, in the experiments, by the Rossby
radius (g'H,)}/f, and by mixing. Before useful conclusions can be drawn it will be
necessary to investigate further profiles numerically, and to find a method by which
the potential-vorticity profile of a laboratory current can be determined to a sufficient
accuracy. At present we can only approximate this profile by assuming conservation
of potential vorticity during the collapse to geostrophic balance.

The observed mode of instability for wide currents may also require the presence
of a lower layer of finite depth. On the basis of previous quasi-geostrophic theories,
conditions at L, > 1 are well-suited to the appearance of a two-layer baroclinic in-
stability. Since L? (after the initial collapse) is a Froude number of the flow, all the
laboratory currents should be baroclinically unstable, and larger values of L, will
give rise to baroclinic waves with larger growth rates. In experiments similar to those
' reported in this article, Griffiths & Linden (1981) have investigated unstable waves
- on an isolated two-layer vortex that is bounded by a sharp density front. They found
that each growing wave led to the formation of a cyclone-anticyclone pair when the
- ratio of layer depths was greater than 10-1. This behaviour is similar to that seen in
- figures 10 and 12, where disturbances grow independently on each edge of the wide

currents, the lower layer plays a visible role, and a number of vortex pairs appear.
. Griffiths & Linden also detected a variation of wavelength with the ratio of layer
{ depths. While no such dependence has been established conclusively for the length
N scales in the experiments reported here, the depth ratio does appear to influence
- significantly the value of the current width %, at which the two-layer instability
- becomes dominant over the one-layer, coupled instability. This transition occurs at
%, ~ 2 for depth ratios near 0-2, but at &, ~ 1-2 for depth ratios near one. Griffiths &
Linden also observed that when the layer depths are comparable, velocities within
the cyclonic eddies, which extended throughout the depth of the lower layer, were
comparable to those in the upper layer anticyclones. Hence the dynamical role of the
second layer may well be important for the wide currents and at the large depth ratios
in the present experiments.

0 g
¢ .
e

7. Conclusions

A single-layer model of a gravity current that is bounded by two free streamlines
on a uniformly sloping surface predicts that such a flow is unstable. The influence of
vanishing layer depth and large inertial effects near the fronts are included. Normal
modes are stable in the limit of infinitely large downstream length scales, but finite
wavelengths are unstable. For currents that are symmetric about their midpoint,
perturbations are simply advected with the mean velocity of the fluid. A combination
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of meandering and ‘varicose’ modes with a phase difference of }n radians releases
kinetic and potential energy from the basic current. When the flow has zero potential
vorticity, the mode with maximum growth rate is predicted to have the wavelength
7-Ug' H) -1, where IT is the maximum depth of tho current, and an e-folding time
of (0-14f)=1, or 0-57 rotation periods. Flows with finite (uniform) potential vorticity
are characterized by the variable length scale L, = f W/(g' H,)}, where W is the half-
width of the current and H, is a depth scale that characterizes the potential vorticity.
The most rapidly growing mode in this case has a wavelength that increases with L,
and a growth rate that decreases rapidly when Ly > 1. Thus, in contrast to the well-
known Rayleigh inflection theorem for quasi-geostrophic flows, we have demonstrated
an instability that does not require an extremum (or even a gradient) of potential
vorticity. It seems likely that the presence of significant inertial forces might similarly
destabilize other geophysical flows.

A second type of unstable soiution to the single-layer equations has also been found,
but has not been discussed here. In this second mode of instability, perturbations are
linked to one edge of the current, and require a non-zero potential vorticity gradient
if they are to grow. As this mode may also be of geophysical significance (perhaps even
in the case of a single isolated density front), it will be described in another paper.

Our laboratory experiments with a current at the free surface of a rather deep lower
layer confirm that a current with two fronts (and nearly uniform potential vorticity)
is unstable. The observed structure of growing disturbances, when the current width
L, < 3, corresponds closely to that predicted. The velocity perturbations first form
‘cat’s-eye’ structures at the centre line of the current, and the two edges co-operate
to form eventually a train of large anticyclonic eddies. The experiments also indicate
that the single-layer instability due to the coupling of the two free streamlines is
likely to continue to be important when the lower layer is relatively shallow, providing
that L, < 2.

A different mode of instability appears to make the dominant contribution to the
release of energy from the laboratory currents when L, > 3. Each edge of the upper
layer then behaves independently and the lower layer plays a visible role. However,
because the observed non-dimensional wavelength is independent of the theoretical
parameter (current width) over the full range of parameters used, an unambiguous
comparison of the experimental observations with theoretical predictions remains
somewhat unsatisfactory.

The flow configuratinn that we have considered is somewhat similar to that of the
Denmark Strait overflow, in which large, energetic oscillations are detected. Smith
(1976) presents an intensive discussion of the data for this flow, and finds that the
horizontal components of velocity are in quadrature, and there is a distinct cross-
stream component of perturbation heat flux which has a uniform sign but varies in
magnitude across the stream. The disturbances are attributed to a two-layer baro-
clinic instability and compared with the predictions of a quasi-geostrophic model.
However, the presence of velocity components in quadrature and a cross-stream phase
lag in the cross-stream velocity of up to 90°, may also be consistent with instability
due to a coupling of the two edges of the dense current. The only mitigating factor in
this hypothesis is that the cross-stream heat flux in the one-layer model, by (4.30),
varies as i, and inerefore takes both signs across the stream. However, an asymmetric
depth profile could well lead to a very small region of reverse @ near one edge, so that
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':, detection of this area might be difficult. Further knowledge of the mean vorticity
32 distribution and the influence of bottom curvature is necessary if the two instabilities
v are to be compared.
i
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Appendix A. A Rayleigh integral argument
N The following alternative derivation of the leading term in the growth rate may be
. found a helpful complement to the matching technique used in §4 and appendix B,
- in so far as the assumptions on the structure of the eigenfunctions are apparently less
. severe.
- From (2.15)-(2.17) and (4.1) it follows that, correot to O(e?), ¢ satisfies
oy 1+k,
- @+ ﬁv) ¢w - Iw ¢v - ( ) $ = O(e?), (A1)
._-, where & = ¢ — U. This is similar to (4.11). Division by (¢+A,)? and integration yields
_:. Sy _ H(=L) J' 1+h, dn = O(e? A2
0 g+h, a+7i,,( L) L_ﬁai 7= 0(e). (42
g Equation (A 2) is to be solved subject to
. - @(-L)=0, (A 3)
and a condition at y = + L. To obtain this, note that integration of (2.17) gives
L L
7 ¢ j Ry = f dy (0K +3h), A4)
i -L -z
o or, after use of (2.16),
L L
- ¢ hdy = ~ie’f dyh(u—c)9, (A 5)
-L -L
o and so
. L _
Ey EP(L) = —ic? f dyk(@—c)9, (A 6)
R -L
S which is equivalent to (4.21).
It is readily seen that, when ¢ = 0, a solution to (A 1), (A 3) and (A 6) is
. p=¢o=ah, c=U (or &=0), (A7)
where a is an arbitrary amplitude factor. We shall now obtain an integral expression
X :_j for the next term in ¢, i.e. &. By integrating (A 2) for ¢, and using (A 7) for ¢~ in the
integral, we obtain
Y & )——¢A——‘Tz+6( +L)+6j E+h,)d j iﬁiidg}
o AT Ey ) y 1) L@k
o = 0@ +0(e?), (A8)
L
L
2
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;._: where a is taken as ¢,(— L) (8 +,(— L))~ for convenience. Substitution in condition
o (A 8) then gives
8 1+k, al% o 7ae
» ooz +tim " @+R)ay[" Zrom T af=-af" ahn, @9
‘: ) to leading order. Reversing the order of integration in (A 9) gives
9 a{zunme —l—ﬂiﬂ’i[E(L—y)—ﬁ]dy} =—e=f" dyhi®. (A 10)

} {: . &=0J-L a+7iy) -L

The term in & inside the integral is negligible, and by rearrangement we obtain

‘ 8’{2L-—lime d; UL —limjL —Idi} = —e’fL dy ha? (A 11)
. im)  HErhpin ) @Ry Tt
N It is readily shown that the first two terms inside the brackets combine to give a
A negligible term of order & Thus
' L
o e’f dyhid
= —=zk
2 & — T (A 12)
= o) L E+h,)
- The denominator in (A 12) can be written as
*
3 J’L hdy J‘L hdy (J‘vc—" J‘ ) _hdy J‘vc+3 hdy (A 13)
= IFATEY Sl B vert) @=EP " Sy s @8
- where 8 —» 0, and y. again represents (one of) the critical layer(s). For ¢ tending to
< zero, the right-hand side of (A 13) becomes
K ve-t (L \Rdy (? (e +O(7%)1dn
" + Y G . — 3
3 -L vo+d/ U a(uyc"""}uwc" +...=¢)
o m 2 3
) uc—a ﬁdy he dy - Uyye T __+ Oo(r®) ..
Rl
-..‘ Vo+d Ve _s ﬁyc ve i‘zyc uyc
(A 14)
Now as 8 - 0, integrals of 9"(y — ¢u,¢)~" tend to 28 - 0, plus correction terms of order
5 ¢ which also are negligible. Hence
) 1 —Z_Zwye - - A15
(.. ;_?(}f (6+hv)2 (J‘ flld*ﬂ) 2 "’W{ 3 ﬂyc [10g3 log( 3)]: ( )
- L kdy ch nh
~ = 16
. pr L @ ]u ’ (4 16)
taking log (—4) = logd — imsgn (i,,) as before. Hence the result (4.26) for &* is re-
[ covered.
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It is shown that a coastal density current in a rotating system is unstable to downstream
wave disturbances when the mean potential vorticity increases towards the (vertically-walled)
coast and when the mean current vanishes there. Other new instability modes are also found
which do not require the potential vorticity extremum of quasi-geostrophic theory. All the
instabilities in our equivalent one-layer model release mean kinetic energy and most of them
release mean potential energy, but an increase of the latter can occur under certain
circumstances.

Specifically, it is shown (a) that mean flows close to uniform potential vorticity can be
unstable to disturbances of infinite wavelength (and hence also for finite wavelengths) even
for monotonic potential vorticity distributions, and {b) that all mean flows which vanish at

. the wall and for which the potential vorticity has a maximum but not an extremum at the
wall are unstable to waves of finite length. A logical extension shows that the second half of
the latter criterion may be relaxed, in fact. The paper concludes with a discussion of the
applications to recent laboratory experiments.

1. INTRODUCTION

Horizontal density differences near the coast of a rotating fluid tend to !
produce geostrophic flow parallel to the coast, and cross-stream spreading ‘
tends to be inhibited by the Coriolis force. There are many examples of
such currents in the ocean, e.g. the East Greenland current, carrying water
of Arctic origin southwards, and the West Spitzbergen current carrying
_ Atlantic water northwards into the Arctic. Coastal currents, involving
=z water denser than its surroundings. can also occur at the ocean floor: c.g..

1
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the overflow of dense Greenland-Iceland sea water at the bottom of the
Denmark Strait into the Atlantic (Mann, 1969; Smith, 1976). All these
coastal currents are bounded away from the coastline by a front, wherc an
isopycnal intersects the occan surface (or floor), such a front can be
thought of as a boundary for the current.

Many observations of coastal currents also show them to be prone to
large disturbances or instabilities, and this has prompted several
laboratory investigations of the instabilities of simple fronts and coastal
currents (Stern, 1980; Stern, Whitehead and Hua, 1982; Griffiths and
Linden, 1981a,b). A variety of instabilities for these fronts has been found:
breaking waves, wedges, bores and cyclone-anticyclone vortex pairs.

Both the experiments and the observations have frequently been
interpreted in the framework of the classical quasi-geostrophic instability
theory, despite the fact that the limits of validity of the latter are exceeded
for a “strong” front. The latter consists of isopycnal layers with large
variations in vertical thickness, and lateral shears comparable with the
Coriolis parameter. Some support for this appeal to quasi-geostrophic
theory can be found in the “strong” frontal model of Orlanski (1968),
which consists of two active density layers separated by a uniformly
sloping interface. A “generic” connection can be made between the
unstable modes in this problem and those in the simpler quasi-geostrophic
theories. But there is no lateral shear above and below the interfacial
discontinuity in Orlanski’s model, and consequently it may suppress new
modes in which a distribuied lateral shear is important, as well as the
lateral density gradients. This is revealed by the following investigation of
the instability of a single active layer with a continuous shear. In the
context of the quasi-geostrophic theory, such a model should exhibit no
instability unless the undisturbed potential vorticity has an extremum. All
the modes discussed in this paper violate this condition, and the

7y
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-j:.*:j implication is that the quasi-geostrophic theory filters out these modes.

&N Although we shall concentrate on the dynamics of a single layer, this

¥ does not mean that the effect of the second layer is negligible in the

N applications mentioned above. But there may very well be a tendency, in
- the interpretation of the data, to exaggerate the dynamical significance of

-_ the “baroclinic mode™ by extrapolating quasi-geostrophic theory too far.

A better starting point for the interpretation of many (complex) frontal
problems may be a one-layer ageostrophic model, which is to he
subsequently modified by considering the coupling with the other layer(s).
.- Be this as it may, we have undertaken a series of analytical studies of an
equivalent one-layer model. The first one: Griffiths, Killworth and Stern
- (1982), cited as GKS hereafter, considered a density current with two free
fronts located on the same horizontal boundary. This problem is simpler
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than the one frec front studied herein! GKS found that for any
distribution of vorticity, the double front was unstable to a growing mode
which coupled thc fronts through a combination of varicose and
meandering disturbances.t The disturbance grew by transferring mcan
potential cnergy (o disturbiance potential energy, and mean kinctic coergy
to disturbance kinctic encrgy.

In this paper we examine the general stability of a coastal current,
bounded on one side by a rigid boundary, and on tie oiher by a front. A
reduced gravity model will again be used. Because the mechanisms of
coupling the two fronts in GKS is now removed by the insertion of a wall,
we can anticipate a stabilization of the flow. However, we shall show that
at least two modes of instability can occur (with a third mode, relevant to
an isolated front far from any wall, to be discussed in a later paper). The
first of these is a longwave instability which can occur on flows of almost
uniform potential vorticity, even if the vorticity varies monotonically
across the current. We shali show that instabilities exist provided the
width of the current exceeds a critical value, but a further necessary
condition is that a mean-flow reversal occurs. This model is therefore
artificial, but we note that it is possible for this instability to increase the
mean potential energy of the flow.

Another mode of instability is found where there is no flow reversal,
and in the realistic case when the mean flow is at rest at the wall. For this
case, instability occurs where the potential vorticity increases towards the
wall. Flows possessing reversals also have this mode, with growth rates
typically greater than for flows of uniform direction. This instability
possesses similar energetics to that in GKS, but rather weaker due to
stabilization by the wall.

Section 2 of the paper describes the one-layer model used, and the mean
flow. Section 3 proves the first main result, concerning infinitely long
growing waves on a mean flow close to uniform potential vorticity, and
discusses the energetics involved. Section 4 proves the second result,
concerning long growing waves on a mean flow which vanishes at the
wall; this necessitates some straightforward but tedious matched
asymptotics. This section again discusses the energetics. Section $
gives a qualitative discussion, based partially on computed results for
non-long waves, of the dependence of the instabilities on current width.
Section 6 discusses the applications of the theory to laboratory
experiments.

+There are other disturbances possible; the thrust of GKS was to demonstrate that a
general class of instability must exist on such a flow.
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2. FORMULATION

We consider the configuration shown in Figure | in which a fluid of
uniform density p, flows above an infinite fluid of density p,>p,. The
v undisturbed flow in the upper layer is parallel to the x-axis, and is
o bounded by a front at y=0 (where the depth of the upper fluid vanishes)

-
< and by a rigid vertical wall at y=L. The relative depth in the lower layer
P2y is assumed to be sufficiently great so that the velocities and pressure

& gradients produced in it are negligible compared with those in the upper
layer. Consequently the momentum and continuity equations are (for
shallow water)

"

3 U+ uiy +vu, —fo= ~g'h,, 2.1)
% v+uv +ov,+ fu=—g'h, 22

‘ h, + (uh), +(vh),=0, 23)
N
.\’ where (u,v) are the (x, y) components of velocity, ¢ represents time, f is the
. Coriolis parameter, and g'=g(p,—p,)/p, is the reduced gravity. We
k- choose non-dimensionalisation, following GKS, which will be convenient

for motions with x-variations long compared with the radius of

> deformation a=(g’H)"?f !, where H is taken as the (upper layer) fluid
) depth at the wall. Nondimensional values are defined by

": x=x%"la, y=y*a, t=t* 'f !,
u=utg'H)'?, v=v*s@H)'%, h=h*H, (2.4)
2

.__\

b
1:‘:
...:j

‘n“

.-.‘
=
-
_ FIGURE 1 The configuration for the one-layer problem discussed in this paper.

é
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s where the starred quantities are nondimensional and the downstream

o lengthscale is €™ 'a. Analytically we shall be concerned with ¢ small (to

o demonstrate stability). However, no restriction is placed on & in the

{ scaling, or in numerical solutions. Upon dropping the asterisks, Egs. (2.1

o (2.3) become

;- U+ utt,+ v, — 1) = —h,, (2.5)

5

D eX(v, +uv, +w)+u=—h, (2.6
h, +(uh), + (vh), =0, 2.7

and the mean flow, denoted by a bar, depends only on y and satisfies the
geostrophic balance

2 5=0, i=—h, (2.8), 2.9)
h=0, y=0, (2.10)
N h=1, y=L. @.11)

The potential vorticity of the mean flow is defined by

.

P=(1-di)h=(1+h,)k. 2.12)

We impose a small perturbation of the form

’ -
4 4 «
‘l .' ‘l .A * ‘. “d

W, v, W)=(4, 5, Rexpi(x —ct)

on the mean flow, where c is the phase velocity of the perturbations.
Unstable modes will have Im(c)>0, with growth rate £Im(c), since ¢ plays
the role of a wavenumber. The linearised equations for these perturbations
are then, dropping tildes,

(@—cu+(1—-da)iv+h=0, (2.13)

. u+e(@—cliv+h,=0, 2.14)

% fiu— (Riv), + (@ — c}h = O. (2.15)

' By solving (2.13) and (2.14) for u and iv in terms of h and substituting in
(2.15), we obtain a single equation for h, the simplification of which is

[AQ™'h,],+h(1—e2hQ "' —(RQ~“)(i—c) ']=0, (2.16)
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where
Q= - ) L+, (2.17)

The wall boundary condition (L)=0 for (2.16) becomes
(@—chy,—h=0, y=L (2.18)

when (2.13), (2.14) are used. The boundary condition at the front can be
obtained by the requirement that (2.15) be well-behaved when A vanishes,
or

iv=—(@—-ch/a, y=0. (2.19)
Using (2.13) (2.14). this implics
h,=h[Qui '+@i—0c) '] _v.=0 [if Q1O =0]. (2.20)
In the special but important case where Q(0)=0, we have
(u—ch,—h=0, y=0 (if Q)=0]. _ (2.21)

This condition applies for all finite P(y) when £=0. For the case where the
mean potential vorticity Po= —Q/h also is constant, (2.16) reduces to
hy—Poh=0, and the solution satisfying (2.18)42.21) gives two real
eigenvalues c. This does not mean, of course, that waves of finite length
are stable.

3. LONGWAVE INSTABILITY OF PROFILES WITH NEARLY
UNIFORM POTENTIAL VORTICITY

a) Demonstration of instability

In this section we shall prove that there exist mean flows close to uniform
potential vorticity which are unstable to disturbances of infinite wavelength,
even if the vorticity distribution remains monotonic. An immediate corollary,
following an expansion for small ¢, is that such flows are also unstable to
waves of finite wavelength.

To obtain this result, we first set ¢ to zeic in (2.16). Q then becomes
equal to the negative absolute vorticity and (2.16) simplifies to

(h,P~Y),=h[1 - PP *i—c)'], 3.1)

where P is the mean potential vorticity defined by (2.12). Multiplication of
(3.1) by h*, where an asterisk now denotes a complex conjugate, and
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integrating from 0 to L gives

LY
At e

X T R L N LY
¢ ol 3 N ' — 20 f f ¥ . 1
[ P J,, Vp A=y -f g, (4-2)

Regardless of whether P vanishes at y=0 or not, the imaginary part of
(3.2) yields the same result after use of the boundary conditions (2.18).
(2.21) for h,, namely

L
Im [|hf?/P(i— )] = —1m | [|h|>P,/P*i— ¢))dy, (3.3)
or ’
L
Im(c)- [|h[*/Pli—¢)*16= —Im(c) {(|h|>P,/P*|i—c|2)dy. (34)
V]

When P=P, is constant [corresponding to mean flows h=hely), u
=uo(y)], the hyperbolic solutions of (3.1) yield real eigenvalues c=c,, and
(as proved later), #,—co=0 at some y=y, in 0<y,<L. We also assumet
that for mean flows with potential vorticity

h=ho+ph,, P=Po+uPi(y), p<l, (3.5)
(h, ¢) exists such that, for u—0,
h~ho+phy;  c~Co+pcy=co+plcy, +icyy). (3.6)
(In fact both h and ¢ may be expressed to O(u) as a simple power series
expansion; terms in logu enter at higher orders in the expansion.)
Substituting (3.5), (3.6) into (3.4) and taking the limit as u—0, with
pcy;>0, yields
pc,,-[h(z,/P(,[:I~('“|2]f;
L .
= — ¥, Lim [ (h3P,,/P3i—c|*)dy
u—-00
L
= —u2c Py hdy P, 2 Lir? !, [y Ny — y)? +uicd] dy
-

= — P, (Y hYyJn/PEliy.)

* ‘3.7’

+This assumption has been verified by detailed matched asymptotic expansions similar in
nature to those in GKS. The details are tedious and unenlightening, and are omitted here.
However, such calculations are always necessary when some form of the argument in this
paper is used, in order to show the existence of the assumed eigenfunctions.
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= —hs(yt)npI)'(yc)/P0|h-yy(yt)|[h(z)Iu—_ "o|- 6. (3.8)

This is an expression for Im(c) to first order in u, where u is a measure of
the potential vorticity gradient. Now h, satisfies (3.1) with P, replacing P.
ie -

hoyy=Poho, (i—colho,=ho, y=0,L. 39)
The first of these may be written as
d(hj, — Poh3)/dy =0,
5o that the end point contribution in (3.8) becomes
(3~ o)™ *J6=[h3,J6=Polh315, (3.10)
giving
c1i= — Py yhirdn/ P3|h,(y.)|[h315- G.11)
Since c,;>0 was assumed, it follows that for long-wave instability P,/y.)
must be positive (negative) according as [h2]§ is negative (positive).
Before evaluating (3.11), it may be helpful to give a qualitative

" demonstration of the crucial point: that (#—c,) can vanish in 0<y<L for
certain values of the parameters (P, L). The solution of (2.12) is

Riy)=Pg '(1~cosh PY%y) — @O)P; '/ sinh P2y, (3.12)
and A=1 at y= L implies that
W0)= — P}'*{1 — Py *(1 —cosh P{/2L)}/sinh P{/*L. (3.13)

Hence

#(L)= —h(L)=P; ''*sinh P{/*L +(0) cosh Pg'*L. (3.14)

It is clear that values of (P,, L) can be found for which a(L) vanishes. In
such cases, ¢, =0 is an eigenvalue of (3.9), with eigenfunctions hy,=u (a fact
which will be generalized and used again later). Thus for these (P,, L)
values, w(0)—c¢,<{(L)—cy,=0, assuming # to be monotonic. The critical
layer is at y=L for points on this (P, L) curve, and therefore points
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slightly on one side of this curve will yield values of u(L)—c, which are
positive. Since u(0)—c¢, is still negative, the critical point y, will now lie
slightly inside (0, L), and this completes the simple argument.

To evaluate (3.11) we need ¢, and y, as functions of L and P,. together
with hy. Now the solution of (3.9) is

hy=sinh P2y + feosh P2y, (315)

where f# is a constant of integration. Substitution into the boundary
conditions and elimination of f# yields a quadratic for ¢,:

[@(L)—c,]Py 3 {cosh P4 2L+ Py2 sinh PY2L - [w(0)— ¢, ]}
=sinh P} 2 L+ P2 [u(0)— ¢o] cosh P 2L, (3.16)

which can be solved numerically using (3.13), (3.14); § is then found from a
boundary condition. Of particular interest are the critical values L, i.e. the
values of L for which either @{L)~c, vanishes or #0)—~c, vanishes. From
(3.16). if wlL)=c, then

co=u(L)=10)+(sinh PY2L)/P}* cosh P}/*L, 3.17)

while if #(0)=c, then
Co =W =u(L)~(sinh P{/2L)/P}/? cosh P} 2L.. (3.18)

Clearly (3.17), (3.18) give the same relationship between P, and L. after
some algebra this reduces to

L=L =Py, "?cosh '[1/1-P,)]. (3.19)

Instability can only occur, then, for values of L on one side of L this is
easily seen to involve L> L, for instability. The value (3.19) for L_is also
the maximum width for a parallel current upstream of a wedge solution,
as discussed by Stern, Whitehead and Hua (1982).

The curve (3.19) is shown in Figure 2a. For small P, L ~2'°
+(8.2' 252 Py, and L—2 as Po— 1. So the condition for long-wave
instability is that L> L(Py)=2""2; in other words the width of the current
must at least exceed 2''? radii of deformation for instability. A little
algebra shows that u{L) vanishes when L=L.. and is positive when L> 1. .
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associated with mean flows which pos

FIGURE 2 Details of the longwave instability of Section 3. (a) the critical width L. of the
current, as a function of basic potential vorticity P,. (b) the phase speeds ¢, c_ as functions
of L for P,=0.05. (c) the growth rate Im(c,) P;,¢ as functions of L for the ¢, solutions

(upper quadrant) and c_ solutions (lower quadrant).

Since w0) is always negative, it implies that long-wave instability is

sess flow reversals.t

The growth rate of the solution (given by ¢,;) depends crucially upon
which solution of the quadratic (3.16) is selected. These solutions will be
denoted ¢, and ¢_, with suffixes denoting the direction of propagation; c.,
is asuociated with a critical layer near y=L, c_ with one near y=0. As
Figure 2b shows, the c, solutions propagate slowly (at a fixed L, c,
decreases with P,, so that the 0.05 curve is one of the faster modes), while
the c_ solutions propagate rapidly downstream. However, evaluation of
(3.8), drawn in Figure 2c, shows that the growth rates are very tiny for the
¢ _ solutions (indeed, for fixed L, |c,,-| decreases with Py, so that the 0.05
curve is one of the larger growth modes), but are quite sizeable for the ¢,

+1t might be assumed that the O(u) modification to A could, for L near L., be sufficient to
make u negative everywhere. However, such a modification must take L) through zero, at
which value ¢=0 as noted already. Such a point is a bifurcation between two complex
conjugate roots for ¢ and two real roots, so that the statement in the text continues to hold.
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solutions. The sign of the instability is such that the ¢ instabilitics need
P, ncgative, the ¢, instabilities P, positive, where P, denotes 2, (v,).

b) Energetics

GKS found that the two-front instability was associated with a release
of mean potential energy, but that the perturbations drew their energy
from the kinetic energy of the mean flow. The situation for the long-wave
instability in this section is a little more complicated. The global energy
source can be located from an energy integral. Following GKS. insert
small perturbations (', v’ k) into (2.5,2.6,2.7); multiplying these equations
by hu', hv', and k' respectively, setting ¢ to zero, adding. averaging in the
x-direction (denoted by angle brackets) and integrating from y=0 to L
gives

| &

L L :
iEdy= — {huCu'v'ydy, (3.20)
0

.

t

where
E=4(hui'?>+h?) (3.21)

is a convenient measure of kinetic plus potential energy of the
perturbations. Hence the perturbations draw their energy from the mean
kinetic energy of the flow, through a transfer of momentum by the
Reynold’s stress

R={u'v"). (3.22)

Now
w—h, (3.23)
v =y, + uhl, — BN, — 1), (3.24)

by perturbing (2.5). (2.6) successively, so that
R=¥1-4,)""lm{c|h,|*+hh?}. (3.25)

where a star denotes a complex conjugate. To order 4, then, using (2.12),
(3.6),

R=pc,(h, —$)2Poh, (3.26)

o C e e e e imla e A lat ol aalelmfalata malo A A4 e m_ s m_m om . a =
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&)
R where
x pe = Im(h*h,). (3.27)
: Now ¢ can be found from an integration of A* times (3.1). letting ;—0.
-’,'.:4 and takes the two discrete values

'_::: hz 0 < cr
N ¢={ 0f0)  y<y (3.28)
. hoL)  y>Ye

and it is straightforward to show by integrating (3.9) that R is negative

throughout (i.e. there is movement of negative u-momentum away from

o the front by the eddies). Hence (3.20) shows that the total perturbation

energy increases for all time.

- The contribution to the total energy from the potential energy is of
interest. Straightforward algebra on the mean and fluctuating parts of (2.7)

" shows that
u:'.l‘
:-:3': d L L - 177
o 21 AR dy=—[ah>dy, (3.29)
= dL L L
. AR dy=+ g ﬁ'<u’(h;—v’)>dy=%u0u£ |ho|*dy>0.  (3.30)
DA 0
f_:::; The rate of change of mean potential energy depends on
o S=(vkY, (331)
1
the eddy mass flux, given after usc of (3.24) to (3.28), as
i .~ 2P0h- y {(ll.— (.0",(2)‘_(0)__ hOhOy Y<Yes
o VRY=4 : (3.32)
N MuCy; N (@ —co)hd (L) —hoho, y>y..
0]
We have been unable to simplify this expression further. However,
: numerical evaluation shows that the ¢, eigenfunctions (i.e. those with
:.-:: ¢>0) have S negative for y approximately less than the value where A
ol reaches a maximum, and positive thereafter. In other words, the mass flux
- iy acts roughly to spread out the mean depth profile. This is confirmed by
Iy evaluation of (3.29), which shows the mean potential energy to decrease
with time. Conversely (3.30) shows that the perturbation potential energy
P increases with time, at a rate found numerically to be nearly equal and
f opposite so that total potential energy is approximately conserved.
-‘\- - .
A '\
®!
.V.'i‘
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However, the ¢_ eigenfunctions behave quite differently. S takes positive
values nearly everywhere, so that there is a tendency to pile up fluid near
its maximum depth. As a result, evaluation of (3.29) shows that mean and
perturbation potential energies hoth increase with time, which means these
weakly growing modes are driven only by the mean kinetic energy of the
system.

c) Numerical confirmation
In order to confirm these resulits, (2.13) to (2.15), with ¢ set to zero, were
solved numerically for the mean profile

h=ay—4y*+ By’ HML)=1; 0<ysL=2. (3.33)

When =0, this corresponds to the case of zero potential vorticity (1 +h,,
=0) so that |f|<1 represents a small perturbation to zero potential
vorticity. Furthermore,

d < 1 +E,.,.>=% 6pvu (3.34)

aG\F )STET R
for positive B, this is positive at the value of y. corresponding to ¢,
modes, while for negative f, this is negative at the value of
corresponding to ¢. modes. So both values of § should yield unstable
modes, those with positive § being more unstable.

The numerical results are shown in Figure 3 for —0.06 ££<0.0625. The
latter value (f=1/16) represents a cut-off for longwave disturbances, since
at this value (L) vanishes and then c¢=0. Thus for §.- 1/16, there are only

.stable longwave disturbances, with ¢>max(i), as suggested by the upper

curve. Evaluation of (3.11) for vanishingly small P, (i.e. zero potential
vorticity) gives, in confirmation, a line tangential to the ¢; curve for >0,
and a zero value (also tangential) for §<0. The values of the energy
integrals were also found to be in agreement with the asymptotics, with
mean and perturbation potential energy both increasing for negative f in
the range shown (although the mean potential energy decreases for fi<
—0.08, but at a rate far less than the increase of perturbation potential
energy).

In summary: although conventional instability theory for a one-layer
fluid implies that an extremum of potential vorticity is necessary for
instability, this turns out not to be the case. Infinitely long waves of
infinitesimal amplitude can grow on a single front bounded by a coastline
even for profiles with monotonic vorticity gradients.
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<. FIGURE 3 Numerical solutions for longwave disturbances to the profile h=ay - {y? + fy?,
K2)=1. The lowest curve shows ¢; as a function of § (there is stability for f>1/16). The
upper curves show ¢, for the Cov € solutions, together with the mean velocity at the wall
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2 AL).

The mean profiles so far have been restricted to those “near” uniform
‘-';':; potential vorticity, because these are experimentally realizable. Due to
s friction, etc., however, most of these flows have u vanishing at a wall,
. without a flow reversal. Such flows are stable to longwave disturbances,
o with eigenvalue zero. The conditions under which they may be unstable to
> X non-long waves will be examined in the next section.
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B> 4. INSTABILITY OF FLOWS TO DISTURBANCES OF FINITE
: WAVELENGTH
’ »
2 a) Demonstration of instability
‘ We shall now remove the severely limiting restriction on the discussion
N - in Section 3 by showing that all mean flows (4 <0) are unstable for which
3
¥ &L)=0, 4,/(L)<0.
3
: The starting point for this investigation is the observation that the long
- wave (¢=0) Eq. (3.1) is satisfied by
X
3¢ h=4, c=0,
N u ¢
: since the right-hand side of (3.1) reduces to i+ (P~ ')/dy=H—h+ P ')/dy
> and the left-hand side reduces to d[(—AP+1)P~']/dy. Moreover, the
. boundary condition (2.18) is obviously satisfied, as is (2.20), or (2.21), if ¢
and ¢ both vanish. The foregoing means that h=h, =4 gives the leading
a term in an expansion in powers of ¢ of (2.16)+2.20). We shall solve this to
sufficiently high order to show that ¢;>0 and the flow is unstable. Since
2 the resulting matched asymptotics are algebraically lengthy, the following
B brief overview may be found useful.
o Straightforward expansion of (2.16) in powers of ¢ fails for two reasons.
Y First, the equation becomes first-order in y, the second-order term being
X multiplied by a small quantity. Thus a boundary layer structure must
X occur somewhere, within which the second-order term is important and
2 the (outer) expansion fails. This layer turns out to be at the wall y=L.
. Second, the outer expansion is badly behaved at the wall, necessitating
N logarithmic terms in the ¢ expansion.
-: This forces the (outer) expansion
o
. h=ho+e%h, +e*logeh, +e*hy +... ,
: c= ¢, +ete,+..., 4.1
‘ since a little algebra shows that the O(¢) term in the expansion for ¢ must
°} vanish. A simple matching at O(e?) between outer and inner solution
- shows that ¢, and h; are both real. This yields a critical layer (41— =0) at
. a distance O(c?) from the wall, where (2.16) becomes singular. (This
: singularity is present in both outer and inner solutions.) It is necessary to
o invoke a yet smaller layer (a “tiny” layer) of thickness O(e*), situated a
. distance O(c?) from the wall. This double layer structure is shown
-
X
4
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schematically in Figure 4, and has an “inner” layer of thickness &, with
co-ordinate Y defined by

y—L=y=¢%Y, 4.2)
within which is the “tiny” layer of thickness ¢*, with coordinate = given by

-: z=[j—elc iy (L))/e* =Y —c,4, "(L))/e>. 4.3)

0!

(There will be little need to consider the formal details of the “tiny” layer,

o whose role is restricted to providing certain complex phase shifts of

e logarithms.) The matching at O(¢*) will then show that ¢, is complex, and
i—c is O(e*) in the “tiny” layer, which smooths the singularity in (2.16).

We now demonstrate the above assertions. The outer solution begins

- with
ho = li, Co= 0, (4.4)
- and ivo= —h, is the corresponding leading term in v=vo+&%v,+....
- Higher orders may be obtained either from (2.16) or more easily, from
_'~: expansion of (2.13) to (2.15). From these we obtain a first-order differential
N equation
hd y
N u‘h,,—u’,h,—ai’——c,—(l—li,)r"gh'ﬁzdy=0. (4.5)
<. inner
o  — OE*)
< =Y
2d : : l
| | | |
K] | |
-2, | 1
Y i 1
P ] ! v
% it
. | !
) ' ] !
: I
.:; § | |
kY H ! | a4
F iy vl
b Y-c,u
*0(€")
" =g’z
FIGURE 4 Schemaiic of the double layer siructure for the problem of Section 4.
@
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The succeeding terms in the h expansion are
hz = 0. ‘4.("
lﬂl,,—ﬁ,’l,—(’;+.’/(h,)=0, (4.7'

where 2{h,) is a complicated second-order functional of h,, and (4.6) has
used the convenient scaling condition

h=ud, y=0. (4.8)

Equations (4.5), (4.7) are singular when u vanishes, and the form of the
solution is

hy~a,+B,7log|f|+119+..., -0, 4.9)

hy~wlog|s|+as+...,  §-0, (4.10)

where most of the coefficients are determined by substitution in the
equations.

The inner layer equations are much easier. Noting that h vanishes to
leading order, we may write

Wy)=he2N=H(Y)=e*H, +e*loge H, +e*Hy +. .. 4.11)

in the layer (H should not be confused with the dimensional depth of the
fluid). Expansion of (2.16) yields

H, yy=0, H,yy =0, (4.12), (4.13)
Hyyy=—u,pH,y+u,pH,(Yu, —c,)" !, 4.14)

where
u, =d™gL)ydy", p=[1—-u L)) '=(1—u,)" (4.15)

are conveniently defined. Because ¢ is negative, u, 20. The boundary
condition (2.18) gives (unless u, =1, a singular case)

C|"|y+Hl=0, (4]63)
C|H2y+H1=0, Y=0. (4|6b)

('|H3y+H3+C2Hly=0. (4'6(:)
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The first step of the solution is to show ¢, to be real by matching at
O(e?). To this order, the outer solution is

h=ﬂ+czh|=82(“l|+a,), (4.'7)
after transformation to inner variables. The inner solution is merely
H1=A|Y+Bl, (4.18)

with the tiny layer providing continuity of A,, B; across the (as yet
undefined) critical layer. Matching yields the inner solution as

Hl=ulY+a|, (4.19)
and substitution into the first equation of (4.16) gives
Cytéy +o, =0, (4.20)

where a, is defined in (4.9). Now (4.5) gives

a,=[—-c,—(l—u,)'j‘iﬁd’dy]/u,. 4.21)
which, after use of (4.20), gives
¢, =~—[t +|i,(L)]“'ani2dy. 4.22)
[1]

Hence ¢, is negative for all profiles under consideration, since u, =u,(L)
must be positive. Hence #—c vanishes at a value of Y =c,u; ' <0 which is
inside the fluid. Thus H,, given by (4.14), is singular when Yu,—c,
vanishes.

This singularity will force ¢, to be complex. As indicated in the
preamble, the matching at O(g*), now involving the tiny layer, will obtain
¢;. To O(e*), the outer solution is

4

(X
o

- -

¥ F T
a4 8-
LA
P

h=1+¢%h, +¢*h,

L)
. 8

=eX(u, Y +a,)+c*loge(28, Y + w)

. aat -~ " o’

ey

+e* 3, Y2+ B, Y log|Y|+7,Y +wlog|Y|+a5), (4.23)
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after expression in inner variables and truncation to O(e*). The inner
solutions are

H2=A2Y+Bzg (4'24)

Hy=A}Y+BF +3u, Y+ uye oy (Y = cqug "WloglY - euy Y-~ 1)
(4.25)

where the superscripts + refer to (Y —c,u; )20 respectively. The jumps
in Ay, B; are found by consideration of the tiny layer at O(eS), where
terms in zlog(z—c,uy!) occur. As Im(c,)>0 by supposition, this leads to
log(—|Y)|) being interpreted as log|Y|—ix, so that

A3 — A3 =inuyc,fu,, (4.26)
—Bj = —inuyc3/u?, 4.27)
which are the phase jumps in the evaluation of the logarithms in (4.25).

Writing the inner solution to O(e*), expressing it in outer variables and re-
truncating, leads to

h=c%u (Y —c,)+e*loge(4,Y +B,)
+e4A; Y+ By +4u, Y2 +uscur 'Y log|Y]
+2uyciuy 2 —ugcui 'Y —uycug 2log | Y)). (4.28)

Matching the O(e*) terms only (as these will yield c,) between (4.23) and
(4.28) gives

Ag- =N +cluz/ul, (4.29)
B3 =a;— 2k, /u3. (4.30)

The eigenvalue ¢, is now obtained by substitution into (4.16c). Using
(4.26), (4.27) this gives
-4

2

U,c

+cyu, +%(—l—in—log
1

c,[y,+—(l+m)+ 2og

_—C">+a,=o. (4.31)
Uy

Now ¢,, uy, u,. 7, are all real. Furthermore the imaginary part of a, is,

e R e e e N T A S R e S

B N R T S



;t\{ £ D SR N R SRR AN O 0 A A B T e P O A NS A A ARSI A e RN
2 |
i
‘:‘, 20 P. D. KILLWORTH AND M. E. STERN
f
'?’:: from (4.7), (4.10), only —u, ' Im(c;). Hence the imaginary part of (4.31)
X gives
o 2, -1 2, -2 -1
ciuuy 'n+u, Im(cy)— ctuyuy *n—uy M lm(cy) =0, (4.32)
.y from which
'._'-3 Im(c;)= —ciuynfu,() +u,). 4.33)
£
::é So ¢, is complex, provided that Im(c¢,)>0 as supposed when evaluating
BN the phase shifts. Since u, is positive, this requires
‘;,:‘ u=1,,(L)<0 for instability, (4.34)
: as well as the assumption that the potential vorticity does not vanish at
e the wall. (Thus constant potential vorticity flows are stable because u,
e vanishes when 7 does.) Hence instability requires that the flow not be too
“jet-like” near the wall (when # would have positive curvature).
L Equivalently, the potential vorticity P given by (2.12) must have a
5o maximum (but not an extremum) at the wall [P (L)>0].
{0
.
’;\: b) Energetics
.
. The energetics of the instability demonstrated here are more
2 straightforward than those considered earlier. The Reynolds stress
A
AN
2 R=(u'v')=4Re{i[(d—c)h,—h}(1 —u,) " h¥} + O(®), (4.35)
b5 and, using (4.1),
M R=4*[1—a (L))" *{Im(c,)a? + Im (ii,hs ~ ih,,)} (4.36)
Py
20 = —4e*Im(cy) [1+4,(L)] = —de[1 +aL)], 437)
’::‘" after use of (4.7), where c¢;=Im(c).
> This is the same expression (but two orders of magnitude smaller) found
- by GKS, showing that similar energetics to the two-front case are
‘,{: occurring, but heavily stabilized by the presence of a wall. Similarly, the
:’,:: mass flux is given by
2 S=CoRy=4[1—i(L)] ' Re{—i(d—)hh*}
=441 —u (L)) '{—Im(c i+ i hm (hy, — i jhs))
o
L =defuIm(c,) =i, <0 (4.38)
o
W
5
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for all y. This is again formally the same expression as in the two-front
case, and shows a redistribution of mass leading to a lowering of the mean
centre of gravity.t Indeed,

L {. {.
. d [ dy= - [ae'hydy= L [itdy <0, (4.39)
dt ) i) 0
and
d & L L
yr [<Ah2>dy=4c, {|ho|*dy= +4c; fudy>0, (4.40)
to 0 0
so that
d L
—[(PE+PE)=0, (4.41)
dr 0

showing that total potential energy is conserved (and therefore so is total
kinetic energy). However, (3.20) shows again that mean shear is necessary
for the instability (i.e. a source of potential energy is insufficient), so that,
for example, the two-layer configuration discussed by Jones (1977), with
constant 4 in the top layer, is stable unless the deep lower layer is allowed
to play a role.

c¢) Numerical confirmation and extensions

We again consider first the profile (3.33), with B chosen so that (L)
vanishes (1.e. §=1/16). The stability curve is shown in Figure 5, together
with the asymptotics (4.22) and (4.33) for the real and imaginary parts of
¢. The expression for Re(c) is quite accurate for ¢£0.6, whereas the higher
terms in the expansion for ¢; cause (4.33) to hold only for quite small
values of &. Nonetheless, the validity of the asymptotics is demonstrated.
The growth rate ec; reaches a maximum at e=1.26, ¢;=9x1073, ¢,
=0.012. (This growth rate is an order of magnitude smaller than those
found for the two-front instability by GKS, again demonstrating the
strong stabilizing effect of the wall.) The structure of the fastest growing
mode is very similar to that shown in GKS, in that the mode has
horizontal velocities almost 4n radians out of phase. as the asymptotics
above would suggest. It is quite surprising that small £ asymptotics should

tHowever, the mass transfer is now one-signed. because 1 is also. This means that the one-
layer model now fits the observations of Smith (1976) in the Denmark Strait even better than
the two-front mode! considered by GKS.
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FIGURE § Numerical unstable solutions to the profile h=(5/4)y—1y*>+(1/16)y°, 0Sy<L
=2, for varying wavenumber . The dashed lines show the predicied asymptotics for small &
given by (4.22), (4.33).

continue to give a qualitatively correct picture at e=0(1). For large ¢, ¢;
declines slowly with &. The mode is concentrated within O(e™ ') of the
front, with ¢, ~®0)+ O(¢~"/%). This frontally-trapped instability mode can
exist independently of other boundaries, and it is hoped to study this
further in a later paper.

The effects of varying the conditions at the wall can be studied by
means of the profile

h=ay+By*+yy* HL)=1; &L)=0; L=2, (4.42)
for varying y. The fastest growth rates, and corresponding wavenumbers,

are shown in Figure 6, and it is interesting to compare this with the
asymptotic theory above. We have, after some algebra, the following facts:

4,(L)=0, y=0; a,,(L)<0,y>0; (4.43)
B(L)=0, y=} ie. @S0, <k (4.44)
u(l)=-1, y=%. (4.45)

Thus when 7 is negative, 4,(L)>0 and there is stability. For 0<y <,
the flow does not have a reversal, and the theory of this section holds
when ¢ is suitably small. As y nears §, u, becomes small and the
denominator of (4.33) begins to increase. When |y —4| becomes of order ¢,
there is a transition to a thicker boundary layer (of thickness ¢). The
asymptotic (4.22) for ¢, continues to hold, but the c; expression is
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FIGURE 6 Fastest growing modes for the profile h=ay+ fy*+yy3, HL)=1, dL)=0, L=2,
as functions of y, proportional to 4,,(L).

modified. For y>4, there is a flow reversal. The expression (4.22) for c,
remains valid, and the critical layer leaves the wall and enters the fluid
proper. It is straightforward, but tedious, to follow the phase jumps in the
solutions and conclude that ¢ remains complex. Only when y nears 3,
when the (1+u,) term in the denominator of (4.22) nears zero, does (4.22)
begin to break down. When y>3, there is a strong flow reversal [17,(L)<
—1] and the unstable mode now possesses complex ¢ even when £=0,
rather like the long-wave unstable flows of Section 3. However, it should
be stressed that despite these subtle changes for small ¢, the behaviour of
the growth rate even at small ¢, as well as the fastest growing mode,
remains smooth, as Figure 6 shows. Values of ¢ for the fastest growing
mode lie around 1.3 to 1.4, corresponding to wavelengths of 4-5 radii of
deformation, with growth rates increasing almost linearly with y. For
small y, ¢ decreases rapidly (indeed, it is a common feature that long
waves are the most unstable near the stability boundary).

5. THE EFFECTS OF VARYING CURRENT WIDTH

The discussion of the previous sections has dealt with a current of fixed
width L. It is of interest to see how the properties of the instabilities vary
with the width of the current. In the case of longwave disturbances on
profiles of nearly uniform potential vorticity (Section 3) the answer is
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5: straightforward. We have seen that L must cxceed a critical value L >2'?
-::-:, for instability to occur, and that growth rates increasc with L. The answer
;:‘ is not so simple for disturbances to a flow with zero velocity at the wall
‘ {Section 4). This is becausc the preferred mode of instability depends both
< on the width and the shape of the profile.

N We can estimate this effect for a few simple cases. Suppose the shape of
X the profile is self-similar, so that
X
ey
)
N3 h=¢(n=yL"). (5.1)
Then (4.22), (4.33) imply [making the plausible—from numerics—but
"j unproven assumption that the small ¢ results give correct orders of
A magnitude when ¢~ 0(1)]

: ¢, =gfe; > —*L[L2—¢" (]! (I,¢(¢’)2dm (5:2)

-.'.,-: i 2
7 —e‘L’dr"u)n{g ¢<¢')2dn}
o, 4
fam: Ci™ECy= " ” (53)
o 2 (=" (]°
; For narrow currents, then (L < 1), the growth rate for small ¢ should vary
;,~- as 1* <1, while for wide currents (L.> 1), the growth rate should decay as
f; L ?<1. The modes under discussion should have largest growth rate
e when L=0(1), with much weaker values for wider or narrower currents.
-‘.: This conclusion may be different for the frontally-trapped modes to be

.

discussed in a subsequent paper.

£ It is of course difficult to conceive of a flow in which the only length
scale is the width L; the radius of deformation (here unity) must be a
natural length scale also. If we now seek an almost total dependence on
the radius of deformation, we have

h=¢(y). (54)
The expressions for ¢, and c¢; yield, for narrow currents
':'T ¢, ~e2-0(1); c;~e*-0(1), (5.5)
so that growth rates should be order unity for ¢=0(1). For wide currents
(L>1), it is natural to assume that 4 decays exponentially away from the

: front on the scale of the deformation radius., so we pose u~e¢ *y21.
o Then
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L 1
—ﬁzgh_lizdy —e2[ha dy
2 A ~ o ~0Hs2
GEETe ™ Tra, i ~0("). (5.6)
c~e*0O(e " Lrfe Yt +¢ 1) =0(:*), (5.7)

which would suggest that instabilities on wide currents can be vigorous
and roughly independent of current width (again, the same will be truc for
frontally-trapped modes).

Typical mean flows will contain depth variations on scales of both the
deformation radius and the current width. Similar calculations imply small
growth rates for narrow currents and only slowly decaying growth rates
for wide currents. However, it is clear that no general rule can be given,
apart from the approximate rule of thumb that narrow currents are only
weakly unstable.

Even this rule can fail, if the flow profile is chosen to give a large value
of Im(c,). Figure 7 shows the fastest growing mode for the profile

h=1-[(L-y)*cosh(L-y)}/Pcosh L, (5.8)

which has 4 and 4, both zero at y=L, implying strong growth rates by
(4.33). The profile is chosen to be “near” the (stable) constant potential
vorticity profile [1—cosh(L—y)/coshL]. The main difference is the
stronger fall-off in depth near the front (and correspondingly stronger
mean flow) for the profile (58). For wide currents (LZ2, say) the
wavelength of the fastest growing mode is almost constant, at 2.5 radii of
deformation. The growth rate decays slowly as L increases, and the phase
velocity ¢, (which always moves with the fluid) grows gradually as L

. increases. (The instability is one confined to the front for large L, hence
the lack of dependence upon L) However, the growth rate increases
rapidly as L becomes small, with a corresponding increase in the preferred
wavelength, because 4 becomes large at the front. The phase speed
increases somewhat for small L. So this is an example of strong instability
for narrow currents, although at longer wavelengths. indeed, for L<2 the
growth rates for profile (5.8) are stronger than for the two-front constant
potential vorticity instability found by GKS, as suggested by u, vanishing
in (4.33).

6. DISCUSSION

Conventional theory for a flow with one active layer (usually known as
quasi-geostrophic theory) implies that an extremum in the potential
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FIGURE 7 Fastest growing modes for the profile h=1—(L~ y)*cosh(L— y)/(L*cosh L) as
functions of width L.

vorticity of a flow is necessary for that flow to be unstable to infinitesimal
disturbances. Such theories are invalid, suppressing interesting instabilities,
when the thickness of the active layer becomes small and when inertial
terms become significant compared with Coriolis terms. In the previous
paper in this series (GKS) we showed that flows with two fronts were
almost always unstable, relative to a mode which couples the two fronts.
This type of coupling cannot occur in the models considered herein,
because of the rigid coastal boundary. However, we have shown here that
the latter flows are also unstable under fairly general conditions, even if
the potential vorticity is monotonic.

In detail, two classes of instability have been derived, both fairly
general. In the first, mean flows close to uniform potential vorticity are
shown to be unstable to infinitely long disturbances, and hence by
extension to finite waves also. However, a flow reversal is needed for this
instability. In the second, mean flows which vanish at the coastal
boundary are also shown to be unstable to waves of long but finite
wavelength.

It is interesting to compare the predictions in this paper with the
observations of unstable buoyancy-driven coastal currents made by
Griffiths and Linden (1981). They found that currents produced
by leaking less dense fluid into a container of dense fluid from a source
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adjacent to a vertical wall became unstable when the width L of the
current became wider than some critical width L., which varicd greatly
with source flow rates, friction and depth ratios (all of which affected the
flow profile). L. always exceeded three deformation radii, based on the
layer depth at the wall. The observed wavelength was about 2L, and the
phase velocity was oriented downstream with a magnitude rather smaller
than the maximum velocity of the fluid. Griffiths and Linden (1981a)
interpret their observations within the framework of quasi-geostrophic
baroclinic theory, ie. the instability releases potential energy via an
essential coupling between the upper and lower layers. The equivalent
one-layer instabilities discussed in this paper can therefore be expected to
explain only certain features of these observations.

The longwave theory of Section 3 predicts stability for narrow currents,
and the theory of Sections 4 and 5 indicate that narrow currents are
usually only weakly unstable. This is in qualitative agreement with
observations, which do not show finite waves for L SO(1). However, there
are areas of disagreement. The observed value of 3<L.<15 is distinctly
larger than is predicted by any of our calculations. Furthermore, one-layer
disturbances on wide currents tend to be trapped at the front, and so also
have wavelengths of order the deformation radius. As previously
mentioned, a clearcut comparison is difficult to make, due to the unknown
vorticity profiles, friction, and due to the modifications caused by the finite
bottom layer in the experiments. The wide variation in growth rates and
wavelengths between the theoretical profiles shows that accurate modelling
of experiments needs a much more accurate knowledge of the mean flow,
and a more detailed theory.

Later experiments (Griffiths and Linden, 1981b) concentrated upon
density fronts produced by the collapse of an annulus of light fluid, so
possessing approximately uniform potential vorticity. These later, more
controlled, results were rather different. The observed disturbances were
almost stationary, and the observed wavelength depended upon the width
of the current. For (initial) widths L less than or of order the deformation
radius, the wavelength scaled with the current width, with a value of
about 22L, but no critical width L. was observed. For L2, the
wavelength scaled with the deformation radius, the nondimensional value
being about 7. There is much better agreement with the theory in
Section 4 for these later experiments. Theory predicts ¢, to be weak [O(¢?)
for small ¢ and fairly small numerically for ¢=0(1)], so that the
disturbances propagate only slowly. The wavelength is predicted to scale
on the deformation radius for wide currents, as observed. The “short™
waves observed for small L may be explained by the rise in growth rate in
Figure 7 for small L, as the wavelength remains of order the deformation
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radius, which was small for narrow currents in the experiments. The only
major discrepancy is that the profile in Figure 7 leads to wavclengths for
large L of 2.5 times smaller than the 7 deformation radii observed.
However, the sensitivity of growth ratc and wavelength to the profiles in
the theoretical model again point to the difficulty of making a comparison
with experiment. We may conclude, however. that a large portion of the
physics is captured by the simple onc-layer model discussed in this paper.
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ABSTRACT:

A Rayleigh integral is used to prove that an unbounded geostrophic
front of uniform potential vorticity is stable with respect to small
perturbations of arbitrary wavelquth. The ageostrophic theory devel-
oped in this study ylields a stable, near-inertial, long trapped mode.
Recent oceanic observations of the increase in the energy of the iner-
tial peak in the vicinity of fronts support the existence of this iner-
tial trapped mode. In addition the iheory yields a geostrophic mode
which is expected to become unstable when the potential vorticity is not

uniform.
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1. Introduotion

The recently growing interest in the dynamics o?Asurface fronts i.e.
when the interface between layers of light and heavy fluids intersect
the surface stems from their ubiquity in the atmosphere and the ocean
(Mooen, 1975; Legeckis, 1978; McClimans, 1979).' The Gulf Stream and the

Kuroshio are two oceanic examples of an unbounded surface front while

ﬁh;z)et strea;\and the Southerly Buster are two atmospheric examples.

Experiments (Stern, Whitehead and Hua, 1953; Griffiths. Killworth and
Stern, 1982) as well as numerous observations demonstrate the highly un-
stable nature of surface’fronts.

When trying to explain the origin of frontal instability it was na-
tural to use as a starting point the classical instabilities which the
quasi-geostrophic theory yielded, namely, the baroclinic and barotropic
instabilities. The most renowned examples of instabilities on quasi-
geostrophic systems were given by Charney (1947) and Eady (1949), and a
complete investigation of the necessary conditions for these instabili-
ties was carried out by Pedlosky (1964).

An essential element in the n;cessary conditions for instability on
quasi-geostrophic systems is the gradient of the potential vorticity
(Pedlosky, 1964). This gradient has to change sign in order for inst-
abilities to develop in a two layer, quaéi-geostrophic system (see also
Killworth, 1980), and the same condition, holds when the lower layer is
assumed passive and infinitely deep.

But the application of the quasi-geostrophic instability criteria to
surface fronts i{s unjustified for two reasons. The lateral shear at the

free streamline of such a front must equal the Coriolis parameter in




order for the poteniial vorticity to remain finite. As a result the
Rossby number is 0(1) and the first assumption of the quasi-geostfophic
approximation is violated. The second point is that the variations in
depth of the interface are not small compared with the mean depth (actu-
ally they are singularly larger at thg free streamline), and hence the
second assumption of the quasi-geostrophic approximation is vioclated.
An example of a frontal instabllity on a surface front which violates
the necessary conditions for instability of the quasi-geostrophic theory
is given by Killworth and Stern (1982) where a single layer, wall bound-
ed, front with monotonic potential vorticity is shown to be unstable,

Since the exérapolation of quasi-geostrophic theory to the surface
frontal problem fails in a qualitative way, a different theory has to be
developed for surface fronts. ‘

The first comprehensive study of frontal instability is given in Or-
lanski (1968) for a front consisting of two active layers of uniform
speeds separated by a uniformly sloping interface. In this paper Orlan-
ski found four intersecting families of instabilities differing in the
region they occupy in the Rossby number - Richardson number phase space
and in the generating mechanism. All the growth rates vanish when the
wavelength becomes infintely long and a direct relationship between
these frontal instabilities and the quasi-geostrophic barotropic and ba-
roclinic instabilities could not be established. Although the potential
vorticity in Orlanski's simple model is singular the study demonstrates
that fronts have unstable modes which are generated by mechanisms other

than those known from the classical instability theory.
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Another approach used to develop a new theory is to infer from obser-

vations the essential components of such a theory. In this connection
we note that the Gulf Stream has a very strong surface signiture (see
for example the satellite observations of .Cheney and Marsh, 1981) and
can therefore be classified as a surface front. Observations on the
Gulf Stream show that it has an abundance of instabilities in the form
of eddies, rings and meanders (Lai and Richardson, 1979). Yet other ob-
servations indicate that the pobential vorticity across the Stream is
nearly uniform (Stommel, 1966; Luyten and Robinson, 1974). In view of
the inapplicability of the quasi-geostrophic theory one might be in-
clined to look for unstable modes on an unbounded uniform potential vor-
ticity, surface front. In chapter II we show, using a Rayleigh integral
technique that such a front is stable with respect to small perturba-
tions of arbitrary wavelength.

The implication of this stability theorem is that it is the slight
departures from uniform potential vorticity, possibly through interac-
tion with the lower layer, which produce the observed instabilities on a
front like the Gulf Streanm.

The instability found by Griffiths, Killworth and Stern (1982) on the
coupled front with 2ero potential vorticity is another example of fron-
tal instability which violates the quasi- geostrophic criteria for inst-
ability. This instability also demonstrates the highly unstable nature
of ‘surface fronts where even a dynamically simple front (no potential
vorticity) is unstable.

But instabilities are not the only interesting dynamical features of

fronts. Several recent observations reveal a conspicuous enhancement of
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> nesr inertial oscillations in the vicinity of fronts. Fu (1981) com-
¢ pared current meter data from the Polymode arrays in the Western North
"Z Atlantic. He found an increase of UdB in the energy of the near iner-
X tial peak under the Gulf Stream (4000m) compared with that of the mid-
2 ocean. Fu himself, not being able to explain this increase pointed out
'L: the need for a theory of the coupling between inertial waves and cur-
':3 rents.

;3 Another relevant observation is that of Mayer et al. (1979) on the
is velocity spectrum at a midshelf location on the Middle Atlantic Shelf.
~ They found that the inertial peak contains about 30% of the kinetic en-
‘. ergy in the summer while in the winter the peak is totally eliminated.
E‘ The wind pattern in the region is such that the wind stress is much lar-
‘:'": ger in the winter than in the summer. Therefore the inertial peak in
:-_:: the velocity spectrum cannot be interpreted in terms of a wind induced
1 inertial oscillation (Stern, 1977; Pollard and Millard, 1970). However,
'~" when the hydrography of the water column in the summer is compared to
\' that of the winter it is found that in the summer there exists a strong
EI front t;etween the fresh water runoff and the shelf water. In the winter
E the winds erode away this sharp front and the water is nearly homogenous
. in the vertical.
\ Another relevant observation is that of Kunze and Sanford (1981) who
E.:.;S‘ studied the velocity profile in the vicinity of the North Pacific Sub-
M tropical Frdnt. Their observations showed a sharp increase (a f‘aétor of
t 4) in the kinetic energy of the clockwise component of the horizontal
é velocity in the region of strongest horizontal temperature gradient,.
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¥ All these obscrvations.(Fu. 1981; Mayer et al., 1979; Kunze and San-
i ford, 1981) suggest a strong correlation between the increase in the en-
-% ergy of the near inertial oscillation and the prevalance of fronts. A
-? . theoretical connection between the two is established in chapter III.
gg The observations of Kunze and Sanford (1981) show that the high cor-
.E relation between the front and the near inertial oscillation exists only
‘i for the anti~-cyclonic component of the rotary spectrum of the horizontal
i) velocity. This is the only observation which makes this distinction,
_§ and the results of chapter III on the near inertial stable mode are in
:5 line with this differential increase in energy.
? Another phenomenon which has been observed in numerous oceanic exper-
iments is the slight shift (a few percent) in the frequency of the near
inertial peak (Kundu, 1976; Gonella, 1971; Perkins, 1972; Webster, 1968;
}: - Day and Webster, 1965: Fu, 1981). Although many theories predict it
%{ (Munk and Phillips, 1968; Pollard, 1970; Stern, 1977) the results of
e chapter III provide another explanation for this shift in the vicinity
5 of fronts.
=
;:
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II. LINEAR STABILITY OF SEMI-INFINITE SURFACE FRONTS

The front shown in figure 1 where a layer of fluid of density 9,
and depth h(y) overlays an infinitely deep layer of fluid density Z““’
32 >31 is assumed to have a constant potential vorticity. The x and y
momentum equations, for the u,v velocities respectively, the continuity
equation and the conservation of (the constant) potential vorticity in

the upper layer are:

v % - _q'2h
S eugl e fu=-3'5

<l
L %
N
)
>
S
¥
Y
A\
3
&
h
Q

where 3':31"?'-& is the reduced gravity, f is the Coriolis parameter and
H is the depth of the upper layer at y:-oo.

The first three of these equations are familiar from shallow water
theory and the fourth one expresses the major simplifying assumption of

constant potential vorticity, this assumption is consistent with obser-

vations across the Gulf Stream (Stommel, 1966; Luyten and Robinson,
1974). The single layer model whereby the lower layer is considered to-

tally passive and non-interacting is introduced for simplicity. Exami-

L

nation of quasi-geostrophic theories and other frontal instability prob-

lems shows that the interaction with the lower layer can introduce
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instabilities which are not present otherwise (see Orlanski, 1968; Ped-
losky, 1964). We therefore anticipate that there exist instabilities
which will not be recovered oy our simple model. Nonetheless, an inter-
esting stability theorem and a special inertial mode can be obtained
from our simple, single layer model.

Thesc equations are now nondimensionalized by scaling the u, v veloc-
ities by (g'H)'/2, the time t by 1/f, the height h by H and the x, y

coordinates by the radius of deformation (g'H) In nondimensional

form these equations become

D¢ ox VoY D%
2V L u2Y L 2 s -2k
2€ + W X + U > ~ L Dy

S

_2« L ou .
5 *5x c h

The mean flow is assumed to consist of U, h which are steady, indepen-

dent of x, geostrophically balanced, and with constant potential vortie-

ity; i{.e. -
- __2h
7
I-D“_ :E

b4
The solutions of this which satisfy n(0)=0=0 (- o) are
v\ o
ke
-9 -
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h(v)z1-€"= I- e (y) (2)
We now let the total velocities and interface depth be of the form
usGeu'; vsv'; hzheh' where the primed variables are small perturbations
to the mean. When we linearize the x momentum equation, the continuity

equation and the conservation of potential vorticity and use (2) the re-

sult is:

9“' N [ —9&’ th

> ¢ h U +u-{;—;— ” o (3)
!

9’\ Q- - - -
+ ')+ '+ Uh)ZO )

S5 (ho) s (hu=
) ) 4

_Z:h-;-.g—‘i (5)

2% oY

We assume that the perturbations represent a free wave traveling in

ik(x-Ct)

the x direction, i.e. (u'.v'.h'") = (u(y), v(y), h(y))e where

=a¢k is the phase speed of the wave, The unstable modes are character-

ized by a non-vanishing imaginary part of C:(y‘(.(', kK is assumed, with-

o
:

Craad]
e
o
vt
E,
e
.‘..‘ -
j -‘_'-
i-'_':‘
, g
.

.

out loss of generality to be real positive.

Differentiating (3) with respect to y and eliminating :%;(:]/? bet-

ween (3) and (4) we get with the aid of (1) and (2)

h=-

L‘:
2h Y)Y - _ -
2 c(+-9—-),——(h+9,)(c &)=o “
E When v from (5) is used in (3) we get
'@ - -
® ,,_gg + KL (Y)-€)

h+ K2 (7)
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Before obtaining an ordinary equation for u we draw some gualitative
conclusions on the behavior of the non-trivial solution in the longwave

L §
limit. We note that in the limit K=¥0 equation (7) implies ;,:-25 whi-

Y’
le equation (6) yields uz-%f,‘ for bounded C. The resulting u, h which

are regular at y=-o are uzAe¥z-h and (5) implies that wk. Therefore,
in the longwave limit, when C is bounded, the motion is downstream
{u‘/(,uvl() K-?o) . For finite (w =kC (3) implies in the longwave limit
- -iwuszhv and near the free stream}ine u must vanish i.e, the motion is
, \} ": primarily across stream. For finite k, (7) implies h(0)=z-u(0).(1-C) and
- ' v in (3) is therefore regular at the free streamline.

L ’— Equation (7) is substituted in equation (6) to obtain a second order

:Ef, equation for u. The details of the algebraic manipulation can be found

in Paldor (1982) and the result of the substitution is
iU~ A-J B}
OWD\(L‘Q‘KI)] %; UK J
-— - - - 1
- ufp KX+ G KY) = &R U= ¢) - K ()@= 9]

The problem is to compute C(k) and to find if c1>° for any regular wave

(8)

u(y) which solves (8).

In order to simplify the analysis we use the transformation

Z(¥)=h(¥)= 1- 29 (. e ) a=1-7
and 5% =-(-2)35 ) Z?'.a'z: (/'z/zﬁ;—(hz)g%

Whe wt difine: O (2(y)) = L4 (Y)
Wwe get from (8)

0: 522(2 -2z k] + 82z (2 )z +*) +K*(1-2)]
"'*P[Kl (1-2)(1-2- )+ K}z +kD(-2- =7 [1+1*) (2 2K")] )

which is simpler than (8) because the coefficients are algebraic.

- 11 -
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For real k equation (9) has two regular singular points Z=0,1 (cor-
responding to the free streamline and infinity respectively). About
each of these singular points we can find a regular solution in terms of
a Frobenius series (see Bender and Orzag, 1978), the radius of conver-
gence of which, is not greater than the distance between the singulari-
ties.

By multiplying (9) with some function F(Z) it may be converted to the

Sturm-Liouville form

2(682)+0(@+ve s ¥ )0
Ysl-c =¥, ¥

' 2
Since the coefficients of g—_:g, and E‘D% must be proportional in (10)

and (9), the function P(Z) in (10) is determined by

20(2) 2
557 _ z2(z-0+<) 2k -2, , )
. PE T Tz (-2 (z+k?) =Z Tz Zext
O-pi)b 202
Z+K?
i.e,
P(z): Z‘!’Z)
Z+ K2
Therefore, the oroper multiplier F(Z) of (9) is determined by the ratio
2 ’
of the coefficients of 521 in (10) and (9) i.e.
P(z) _ |

F(z):zl(l-Z)"(?.-l-K") T (-2)(Z+k)?

- 12 -
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The other coefficients of (10) are
Q(z)=-Z ¥liz+x1+22)* (1-2)~2(2+ ) F (2)
R,(2)= K[(+-2)- 22(z+ K*]F (2)

Ry (D= K' {2+ K F(2)

The transformed eigenfunction equation (10) is suitable for the ap-
plication of the Rayleigh integral technique which has been used to ob-
tain important qualitative properties of stability problems. We thus
multiply (10) by d)‘(the complex conjugate of d)), and integrate the re-
sulting equation from Z=0 to Z=1. The two equations for the real and

imaginary parts are
)

v;ﬁqb(z)l‘vz. dz +2¥¢; a‘.(/{dJ(z)fRzalz =0

(1)

it oo, o rieieldz 0

The only boundary condition used here is the regularity of ¢
Equation (11) is obviously satisfied when !‘;=o. Assuming the exis-

tence of unstable modes we let E;#O in which case (11) becomes
, a
/N?(Z)‘ R.G{Z—:-'QX’.,, /@(Z)‘lRQ_JZ (13)
bo] Q

When (13) is used in (12) we get
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The first and third terms in (14) are negative since %m:-

all o Z<£). To show that the second (Q) term in (14) is negative we

write Q as:

Q (Z)z-zK*(1-2)+ (z+K*) (1-2])+ (z+c<‘)/f< 1F ()

Each of the terms in the square brackets is non-negative and. there-
fore Q(Z) is not positive for 0£Z€). This proves that the second term
iﬁ (14) is also negative for non trivial eigenfunctions (¢(Z)£O) The
assumption 3';#0 therefore leads to a contradiction, and thus we have
shown that the eigenvalues of (10) are all real. The single layer un-

bounzied surface front of uniform potential vorticity shown in figure 1

is therefore stable.

- 14 -
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III. STABLE TRAPPED MODES

As was mentioned in the preceding chapter, equation (9) has two regu-
lar singular points at Z=0 and Z=1. The regular solution dh(i) abogt
2=0, and the regular solution ¢R(l-z) about Z=1 can be expressed in terms
of a Frobenius series in Z and 1-Z respectively. The radius of conver-
gence of each of these series is not greater than the distance to the
other s;ngular point, and the series are asymptotic to the solution in
the vicinity of the singularities. An eigenvalue equation which deter-
mines C(k) will be constructed by requiring dbh“‘z) to be asymptotic to
¢‘(z) as Z2-90 , and as a check we will invert the procedure by requir-
ing ¢,(z) to be asymptotic to ¢R(|~z) as Zz->| . As an additional
check we will integrate equation (8) nuﬁerically from Y=-8 ("infinity")

5 and compare the resulting eigenfunction to the one obtained

to Y=-10"

by the series solution. We start by constructing the Frobenius series

solutions (bL(z) and ¢R(l-2) (sae for example Bender and Orzag 1978).
A. The solution near the free stramline.

In the vicinity of the singular point Z=0 equation (9) can be written

- " ' (Z) <¥(]j _
d),_«l»(b‘_-iz—-—*dﬁ_"?"o (15)

where the prime denotes differentiation with respect to Z and where the

functions G(Z), q(Z) are
Z(z+x)+k 2=z

G(2)=- (1-2) (z+K?) ~ T,z +z/k?
q(z)s 2K (=2~ Q) . zk*(-z-°  Z*(1+K*)
-‘ ("Z)(ZJ-KL) (1~2)2 (l'Z.)i
= CK;(. Loy _,,_Lk‘(l-z-c)z-z‘(w&)

I+ -z l*#k‘) (-2

- 15 -
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In order to develop the Frobenius series (16) for the solution ¢,_ (z)
we have to develop the power series @(z)i:z:g“z“/- $(2)=-%_Z“ Since the
power series expansion for T:z’_/;;t converges only for %Al it is
clear that the power series expansion of G(Z) and q(Z) will converge at
o€ Z<! only for Ka>,l . The importance of the Frobenius series (16) is
therefore that: first it yields the frontal boundary condition at Z=0,
and second it can be used to check the eigenvalues (but not the eigen-

functions) we derive in the next section.

Substituting the Frobenius series

¢L(Z)=Zrz_°a.\.z“ Q—o#o (16)

in (15) we first obtain the indicial equation a‘a:o . Therefore one so-
lution has the form (16) (with ¥':0) while the second solution has a lo-
garithmic singularity at Z=0.

Furthermore the coefficients {Q“} in (16) can be derived recursively
by assuming, without any loss of generality, a,=1. The algebraic ex-

pression for the gener?al recursion relation of {0..} is

“—'
P Qs A(0guu*tud

where 8, q, are the power series coefficients of G(Z), and q(Z) respec-
tively. We note that ¢,_(O):O-’% implies, according to the recursion

relation, anso. WXl and we therefore conclude that all the eigenfunc-

A0 I AU

tions have a finite diplacement of the free streamline. Moreover, iden-

Laen
o
»

Ny

tifying Q.:Mo))' cz,=‘a Z{O) the recursion relation Q:3-9,Qe yields
the frontal boundary condition at Z=0 in terms of q, (the coefficient of

Z in the power series expansion of q(Z)) namely:

L 6

@,
s '
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We shall see shortly that the regular solution at Z=1 is zero there.
Hence the proper boundary condition for these trapped modes is ¢( l): 0.
When (16) was summed at Z=z1 it was found to diverge there. Nevertheless
we were able to determine the eigenvalues C(k) by fixing k, and finding
the value(s) of C at which 4),_())::%9... changes sign. The eigenvalues
determined in this way were indepem;ent of the number of terms (N) taken
in (16) when N was large (N>15). Direct summation of (16) does not pro-
vide any information on the eigenfunction aﬁay from Z=0 and we turn now
to the solution near Z=1. ‘

B. The Solution at Infinity.

In order to construct the solution near Zz1 we repeat the same proce-

dure used to construct ¢L » thus we define 1-Z=/' and we rewrite (9) in

the t‘qm

R (/) 'cb s(./‘)

¢;+¢R _’O (18)

- where the prime denotes differentiation with respect to ,/‘ (-02/:-9%) and

where the functions R(/). S(f) are

] /K" A
P\(I‘)-l'(’ f}("’k‘—)-l I-& |- /(1+K™)

o)y LK (=9 K2 (-
S(==(1+K?) (,,.)(Ma Ri——

=-(1+ K2 1-€C_ 1+K*-¢ .
0 K)#[P/ I+ K2 ':—J'/(w’)] KE«QCI

We now use the power series expansions

_2 g () L
,'.',7";/ l/él )'1-/‘,/(|-LK"):§""K) /|+K<I

- 17 -
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in order to develop the power series expansions

ep=Zes 5 s=Zsd"

~
nso

The ro;ult is:

0. - ’ ns 0o
-H'(I-*K‘) "> |
=12 (1- ") | n:zo

S”-‘ K‘c (C—Q-—T;;) . oSt
1- 1+ K¥(1- ) - L3 K=< w2l

The series ZR../ and 2’5 ]" converge for v4/4) , and therefore
hf o nese

(19) will converge at all o<r" regardless of k. Numerical.summation

of (19) at /=1 shows that it converges there too. The solution of (18),

d?: , can be written as

¢g (/'):fpgb./“: (l-z)if.:b, {I-Z)h ) b.to (19)

By direct substitution of (19) in (18) we first obtain the indicial

equation for the iudex g

=i+ K?(1-c*

and the recursion relation for the coefficients {b .S is

b': - (n*QF) ?b (FJ‘() R nl F e nxl

For real w K c <l+x? only the solution with the index
P s+ (H‘K ~W) is regular at Z=1 hence the boundary condition
there is ¢(2 SU):O. When W‘)hk’lp is imaginary and there are two os-
cillatory solutions at infinity (Zz1). We defer a discussion of the
latter case to chapter IV and turn to the trapped modes characterized by

real ﬁ . When (19) is used in (17) the latter becomes

.................
...........
.....................
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s 3 b., (P*%-q.):‘o (20)

nsp

., “ Equation (20) constitutes the eigenvalue equation which determines

I . C(k). It converges rapidly on account of the convergence of (19).

) C.Eigenvalues and Eigenfunctions

'{j ~ The dispersion relation w(k) (Figure 2) was determined numerically

j by sweeping for fixed k, over -(l*x'%(ﬂ)((lﬂ(')‘h to find the w (k) #‘7

' 2
which satisfy the eigenvalue equation (20). In the regions (.‘l.l>l‘*K2

there is a continuous spectrum which is discussed in the next chapter.
Since (20) converges rapidly only 20 terms were sufficient and subse-
quent sumation of 80 and 200 terms yielded indistinguishable results.
The eigenfunctions of the different modes for k=3 shown in figure 3 were
computed with 20 terms from (19). The curve show” in figure 3a was re-
produced with 80 and 200 terms without any discernible difference.

The behavior of the eigenfunctions of figure 3 (found by summing (19)
numerically) near the boundaries 2=0, Z=1 can be derived analytically.
In the vicinity of Z=0, (17) implies that %%(E)‘ and Pfz) have opposite
signs provided q; > 0. From figure 2 (we could also derive this result
analytically from eq. (12)) it is clear that .all eigenvalues satisfy

K
C(K)E‘—OKL-)<[ and this assures that q, > 0 for all the eigenvalues.

4 Thus if ¢{O) is positive the derivative is negative and vice versa.
There is no solution with ¢(0):0 since if d)(o):o:q, then Qu:0, "> )

and hence ¢(z)30. Near Z=1 on the other hand
- s
E{ d)(z)~((~2) ,Z‘?/
" '

and the derivative satisfies there




---------

Hence all the eigenfunctions have a negative slope as Z<1 . All the
eigenfunctions shown in figure 3 satisfy these asymptotic behaviors near
the boundaries.

D. The Longwave Limit.

Our objective in this section is to show that there are no more modes
than given by the numerical summation of the series solution (20) (Fig.
2) and to compute explicit asymptotic expressions for the eigenfunctions
in the long-wave limit. We thus let C-‘Cokd and expand ¢k in a match-
ing power series in k using the asymptotic form of the recursion rela-
tion for {b.} . The resulting highest order term in (20) is then used
to solve for Co for the various o . We first note that on physical
grounds we have to require o/>=l since otherwise w:KC=6KMis infinite
in the limit K¢ ., wWhen of>-1 we let K<» and get the following as-

ymptotic expressions for Rn' S, (which comprise the leading terms in bn)

a

R. ~-nkK ">/
.:‘-' z - -
£ Ck“(C-3) "=
& Sa~ '
E K&(cl__c(“-tg)*h) , nxy
ol ' 14 2
}_- For «Ys, K(<(,K is of higher order than k and @—i.) is O(K, K).
2 a
The problem becomes tractable since B"’Ri‘"ﬂk is of lower order (in k)

2t

than b.VR-‘S.‘VQK > and therefore only the ns=0, 1 terms in (20)
have to summed in the equation of the leading order term.

The first three liﬁe of table 1 summarize the results of this range
of of. Only when ofz) there exists a non-trivial solution for C in

of L
C:CeK namely (= For any «>o ,-(4'1 no such solution exists.

- 20 -
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When -/<el<0, KC€*GK  is of lower order than k. Thus b,.'un are
2(1+d)
O all of order K while b, is 0(1). (P '1.) ,» on the other hand, is

ol
o(K )))I and therefore the leading order term on the left-hand side of

(20) Just b.(P -9). The fourth line in table 1 summarizes this case

ws that in this range of of too there is no non-trivial solu-

o.

The last case to consider is the most interesting and the most intri-

te one, namely of/:-f. This case corresponds to WfKC2§ and is expect-
to yield the high frequency, longwave mode., Since of=-1 we let

32 and this implies 1 '-—*4-0(&) Keo . The recursion relation

{b}
g b.° V'(“‘QF)Z b [C. Ké (n- 1&9)] +0 (k?)

Therefore b.. w2) is 0(1) and the infinite series of (20) has to be

2
sunmed. The value of F depends on Co' For Co >/ .p is imaginary and
there are no trapped modes (this corresponds to the shaded area in fig-

ure 2). When C§=1 we get P:k and
b,= be (-1+ K (2+3¢.))

thus

bo+b,= b, kK(2+3¢.)

Using mathematical induction it is easy to show that

Bﬁ-b.:’;%* 40 (K% )
Therefore
. b= S;((»‘H)C')' o (k) vz
while

9, (b.*b,): b.C. (9*360):13, {3 c°l+gc,)
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The implication of this last estimate is that although q, is 0(1/k)
the highest order term on the left~ hand side of (20) is 0(1).

This 0(1) term in (20) satisfies

-O= q,(ba ‘*bl)" bo"?, ?ﬁb" + O {K)

and when the explicit expression for b_. n>2 is used we get ﬁvbf'

O=-1+ (3¢3+2¢ o) + Co (I*Ce)f (uu)

The infinite ("telescopic") series is easily summed by writing

2%7\.#)'—2’(\‘\ n-{ =-1
wsd nsd

Therefore the equation for C from the 0(1) term in (20) is
 0=2CRCa-1 = (co«u)(ﬂc.-')

The solution of this equation which also satisfies €, -' is (o =-1, It

-l
turns out that the "solubility" of the problem in this €= T  case is

due to the fact that b, M3 is 0(k%) while b,z-b.(1*K) so that
botb,z-xb,

Thus we have verified the two eigenvalues which were found numerical-
3
ly in the longwave limit of figure 2, namely: w:—'—“— and w=-l. We are
_',..—-—-""_“
now in a position to get an explicit expression for the eigenfunctions

using the highest order terms in (19). In the eigenfunction of the
3
W:-'z- mode the only 0(1) terms is b, and therefore in this case

P~ b, (1-2) +0(K?)
so that

wy)= b,e’ +o(k?)

This is precisely the result we got from qualitative arguments following
eq. (7). The 0(1) terms of the eigenfunction of the W=-1 mode involve

2
only b, and b,, since b,‘VK. w2 A . Thus we get

~22 -
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8 P~ (1-2) b, (2 - K(1-2))+0(K%)

S and therefore

g L(y)= b (1-€-Kke)+o(K?)

«

2 - :boe” (1-€7) + 0(K)

;

::; From equations (7) and (3) we can calculate v(y) and the hodograph v(u)
'\' for the two modes. For the w:z’fs mode, U (Y/: b.e’w(k’) and equation
3 (7) implies h()‘):-b.fy*f?('é). Since %E-CKC'\/KB equation (3) im-
2

.3 plies (,-eY)U'sbo(-f")(l-ey](A + O(Ka)

_-5: so that va-iku + o(k3).

:é Therefore the hodograph is the same ellipse at all y with motion being
» essentially longitudinal and the sense of rotation is counter clockwise
4 in the northern hemisphere (where f which is the scaling of t is posi-
‘g tive).

¥s

For the W=-1 mode C%E-t'xc:(' and equation (3) implies

)
» 0>

(l-ey)(}': CUL + O(K)

% 'l"l
g}

.KY
" Therefore although u diminishes at the free streamline UJ=(b,€ , is 0(1)

“ everywhere. Thus we See that the motion is transverse near the free ¢ 3

streamline while far away from it v=ziu and the motion is circular.
These results are shown in figure 4,
¢, The W=-1 mode does not exist for infinitely long waves since when

tz0, v=ib, and requiring u’(-e-):o we get Db,=0 which implies ¢REO

This result is generalized in Appendix A where we show that oscillations
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at the inertial frequency are impossible when k=0 regardless of the po-
tential vorticity of the basic state. ’

E. Additional Checks,

Although the analytical considerations in the previous section and in
the end of section C agreed with the numerical results of section C we

carried out additional numerical checks.

The eigenvalues W (k) (Fig. 2) were checked by summing

4y (22 =§a“u<,w)

with wzw(k). The result was that &,_{Zﬂ) changed sign at wzw(K and
in spite of the divergence of (16) at Z=1 similar results were encoun-
tered when the number of terms summed (N) was 20, 50, or 80.

As a check on the eigenfunctions (Fig. 3) we integrated eq. (8) num-
erically from y=-8 ("infinity") to '1':-10‘5 with C(k)= Q(Kk)/k using a
fourth order Runge-Kutta procedure, The resulting eigenfunctions were
indistinguishable from those of Fig. 3 and the boundary conditions were

satisfied.
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- We notice that the case f'\')$0 ﬁﬂ:"”) is impossible since then
b oA -

s ¢p-¢g (¢R:¢R) is complex but ¢L , which represents the solution at
: 2

E 0<&Z <7< mu.m(i, K ) , is real and (the complex) ¢R cannot be
¢

- matched with (the real) d)L in that region. Only when d)& is the sum of
-

E‘ two complex functions can it yield a real function in the sub-interval
g where ¢_1is the solution.

L
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IV FREE WAVES AND THEIR REFLECTION

2
When W >i'*i<2 we have already noted that there is a continuum of free
modes sSince ﬁ becomes imaginary. Away from the front (i.e. at Z~1)
there are, in this case, two oscillatory, linearly independent solutions

and the general solution can be written as
+ -
Doz P + Y Pe

where

+ H8 . = ) +(BY %2 2 ny .
d);.:(l-z)p'gb.("z) =@ P gb,.e (21)
2o

- 2, aga
and where f= (W = (14K )) is real,

The t‘unctioh d:: represents a wave propagating toward the front from
Y2 -0 whereas Q); is the reflected wave which propagates away from the
front. Y is the reflection coefficient and if h‘"ﬂ then
l@;’l ‘¢;‘ and the wave is reflected by the front without any change
in the amplitude.

If b’l*l the amplitude of the reflected wave is different from that
of the incident wave. This indicates that energy was transferred bet-
ween the free waves and the mean f.ow and in this case the kinetic ener-

gy of the front will increase (decrease) provided <y <| (Y> l)
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The boundary condition (20) implies

Z[b: (n+(p-9)+47b. (m-cf-9)] 0

or

o - -
2 b" ("""6"9')

" - iy - .

- neo

:. The coefficients bf satisfy the recursion relation:

- 3

3 b, =7 éb [1e: F)R met ¥ Om-s "%

. * {‘Y\ 2¢ [3\

-

?S Since Rn' Sn are all real it is easy to show (by mathematical induction,

. + -—

:fj- for example) that b.,, is the complex conjugate of b, . Therefore in

B

- (22) the nth term in the numerator is the complex conjugate of the nth

term in the denominator and the implication is that {‘Y)-‘l so that the

front does not exchange energy with the free waves and no overreflection

oceurs,
(o
, Moreover since t‘\'l:l we can let =€ and then (21) implies
- ‘2 ('2 -L‘?
- - WA W -1 -7_
Pese T [€FOa+e T ba]=2e Pz[ ]
F‘ Therefore up to a trivial multiplicative factor, ¢P~ is real and this
= is consistent with ¢L being real except perhaps for the multiplicative
a2 factor 4, .
L
4
-
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V. DISCUSSION

The unbounded front of figure 1 bears'a strong similarity to (say)
the 15°C isotherm of the Gulf Stream (Watts and Johns, 1982), but numer-
ous observations on the occurrence of eddies and meanders indicate the
highly unstable naturé of the Gulf Stream (Lai and Richardson, 1979).
Since the uniform potential vorticity front of figure 1 has been shown
to be stable (chapter II) the model cannot explain the observations and
Wwe are led to the conclusion that even a small (but finite) gradient of
potential vorticity is of utmost dynamical significance. The effect of
a gradient of the potential vorticity can be studied by either adding it
to the upper layer or coupling the two layers. However, the present
study shows that without it, a geostrophic front like the Gulf Stream
will be linearly stable. This conclusion cannot be inferred from the
existing quasi- geostrophic theory due to the strong surface signature
of the Gulf Stream (Cheney and Marsh, 1981) and the inapplicability of
this theory to surface fronts.

The near inertial longwave stable mode of the unbounded front pro-
vides an explanation for several recent observations of the enhancement
and the establishment of the near inertial peak in oceanic spectra. The
first of these observations is that of Fu (1981) who found an increase
of u4dB in the energy of the near inertial peak under the Gulf Stream
over that of the Mid Ocean peak. Although this measurement pertains to
the lower layer which was neglected in our model we expect that the os-
cillations of the interface will induce the same oscillations in the
lower layer. The coupling between the oscillations in the two layers is

0 e liom
beyond the scope of this work. The seconins that of Mayer et al.
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(1979) on the seasonal establishment and disapgearance of that peak on
the Middle Atlantic Shelf. Both observations cannot be explained in
terms of a wind generated phenomenon (Stern, 1977; Pollard and Willard,
1979), the first (Fu, 1981) because of its depth (4000m) and the second
because the peak disappears in the winter when the winds are strong and
is quite pronounced in the summer when the winds are calm. The hydrog-
raphy of the water co}umn. however, suggests a strong correlation with a
sharp front. In the case of Fu (1981) the front is the Gulf S;ream and
in Mayer et al. (1979) the front is associated with the freshwater ru-
noff into the shelf water,

Ar observation even more supportive of this mode is that of Kunze and
Sanford (1981) on the North Pacific Subtropical Front. Not only does
the energy of the near-inertial peak increase by a factor of 4 in their
observation but the increase is observed only in the clockwise (anti-cy-
clonic) component of the horizontal velocity profile. This is in per-
fect agreement with the inertial mode of section III and figure 4,

This longwave mode might also be relevant to the slight shift (a few
percent) in the frequency of the near inertial peak observed in numerous

oceanic experiments (for example Fu, 1981; Kundu, 1976; Gonella, 1971;

Perkins, 1972; Webster, 1968; Day and Webster, 1965). For small but fi-
nite k the frequency of this longwave mode is slightly above the iner-
i. tial frequency with a maximum shift of 2.2% (UI=;;:;;S'at k=1, Other
theories provide an explanation for this shift in the presence of wind
(Stern, 1977; Pollard, 1970) or randomly distributed sources (Munk and
:i Phillips, 1968). Our model indicates that a sharp horizontal tempera-

g

ture gradient can also cause the inertial peak to be shifted. The prox-
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imity of this long inertial trapped wave to the shaded region of Fig. 2

provides a possible mechanism for its excitation by the free waves. The
suggestion is that the front acts like a one-way mirror whereby long
free waves with frequency slightly above the '1nertial which travel
across the front excite the inertial trapped mode. The details of this
excitation involve a wave-wave interaction theory which is beyond the
scope of the present study.

The low frequency long trapped (w~-'£-3,;<4¢) indicates that an in-
crease in the low frequency energy should be observed in the vicinity of
fronts. We are not aware of any such observation, One possible expla~
nation for this, is that this mode is far from the boundary wail* Ka and
thus cannot be easily excited by free waves having only slightly diffe-
rent frequencies,

Another explanation is that the neglected gradient of potential vo;:
ticity, as well as, a finite denth of the lower layer, will overwhelm
the slow, low frequency mode but will have little effect on the fast in-
ertial mcde. This slow mode CNKa is expected to become unstable when
the potential vorticity is not uniform and the waves are finite but long
(k is small but finite). The inertial mode propagates too fast and a

small gradient of potential vorticity is expected merely to alter the

(real) phase speed.
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VI CONCLUSIONS

A. An unbounded single layer geostrophic front of uniform potential vor-
ticity is stable at all wavelengths.

B. An inertial long trapped mode exists on such a front and can easily
be excited by the free inertial waves.

C. For small but finite k the frequency of this trapped mode is slightly
above the inertial frequency.

D. Trapped waves of finite frequency cannot exist on the unbounded front

when the wavenumber is 2ero regardless of the mean potential vorticity.
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APPENDIX A

The result of chapter III that the inertial mode of the unbounded
surface front ceases to exist for infinitely long waves is shown in this
appendix to be of a mdre general applicability. We will show that infi-
nitely long trapped inertial waves cannot exist on a geostrophic front
regardless of the mean potential vorticity.

Setting -g;‘-’t'K-‘o and following the geometry and scaling of chapter
IT the x and y momentum equations and the continuity equation of the up-

per layer are:

QU L 24 - |

> +U’97 -U =0 (A1)
v Qr =20 (A2)
2e Yoy TUTToy

b, 0 _ (A3)
e 5 (hv)-

The basic (mean) state is assumed to be in geostrophic balance

y i
U= oY (A%)

When the mean and perturbations are separated u:d‘u'j h:h*h' and

when we set -'22(10 the linearization of equations (A1)-(A2) yields

Jt
- 1_
(wu':(f(l-g-g—):u—'(w-a—;;) (A5)
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3
'
»>

Cw(}"¢u'+§.¢‘— z0 (36)
9 -
(wh +9‘/ (;' ) (AT)

where (A4) has been used in the second eq. of (A5).
’

2k

When (AS) and (A7) are used to replace u' and 3Y in (A6), respec-

tively, the result is

2 ! I}
WU (“ay‘) 3v? (“’) © (48)
Carrying out the differentiation in (A8) and multiplying it by h we
get
=% 9__. pile +(w-1)U'=0
h Sy *2hgy oY ;
or
J (T2 __.—-DU’ wz—l ' =
‘a'?(“ Y )-"( ) © (A9)

We assume now that the front is either bounded by a second free
streamline (where h=o) or a wall (where v' vanishes) or t;.hat it extends
to infinity (where v' vanishes for a trapped mode). Multiplying (A9) by
v'*and integrating the result between the boundaries of the front where

-3 "
the boundary term L -a%‘,[(f' vanishes we get

/; oﬁ-& hlU/ (w*-1)dy =0 (A10)
One trivial solution of (A10) is v'=zo. This corresponds to solutions
of (AS5)-(A7) with either W:0 in which case u'-"% or u'sozh'. Both
represent trivial solutions: the former is merely a change in the undet-

ermined amplitude of U, h and the second is the zero solution.
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Since the integrand in the first integral on the left- hand side of

(A10) is positive, eq. (A10) can be satisfied only if w’>( while if
w’sl there is no non-trivial solution.
For an unbounded front far away from the front h=1 and in this region
(A9) becomes
al(jv
oY’

In order for the solution of (A11) to represent a trapped wave which

+ (w1 zo (A11)

decays at infinity (-024’ has to be satisfied. but in this case (A410)

cannot be satisfied. Therefore, on the unbounded front there is no
trapped mode except for the trivial solution
If the front is bounded by a wall or by a second free streamline,

2
then there are non-trivial solutions with W >/,

- 33 -

- ¥
LA




r
b
1
¢

w s e
.......

ACKNOWLEDGEMENT

This work was done while the author was a student at the University
of Rhode Island. The continuous interest and excellent guidance of
Prof. Melvin E. Stern are gratefully acknowledged as is the financial
support of the Office of Naval Research under contract No.

NO0014~81-C~0010 to U.R.I.

.......




-

AR e o g

P

oy

TABLE 1.

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Legend to Tables and Figures

The highest order term in (20) in the limit K-© and the re-

o
sulting solution for Co in C:Cok for various o,

Unbounded surface front with uniform potential vorticity. The
lower layer is assumed inifinitely deep and non interacting
with the upper layer.

The dispersion relation for the unbounded front, The shaded re-
gion ¢43>1+k; represents a continuum of free waves whereas the
various curves with ufkl*Kl represent trapped waves. The W:-/
mode exists for K>0 only.

The eigen-functions ¢(z) representing the perturbation down-
stream velocity as a function of the depth of the upper layer,
for k=3. The eigen-functions were produced by using the ei-
gen-value indicated near each eigen-function and summing 20
terms in eq. 19.

The ellipse of rotation of the two longwave modes, Note that

the inertial mode is rotating clockwise.
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The intrusion of a density current along the coast of a
rotating fluid
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When light rotating fluid spreads over heavier fluid in the vicinity of a vertical wall
(coast) a boundary jet of width L forms, the leading edge or nose of which propagates
with speed ¢ along the coast. A certain fraction & of the boundary transport is not
carried by the nose but is deflected backwards (detrained) and left behind the
propagating nose. Theoretical and experimental results for L, é, and & are given for
a quasi-equilibrium (constant-¢) regime. Over longer time intervals the laboratory
observations suggest that the nose slows down and stagnates, whereupon the trailing
flow separates from the coast and an intermittent boundary current forms. These
processes may be relevant to the mixing of oceanic coasta! currents and the
maintenance of the mean current.

1. Introduction and statement of the problem

The way in which rotation inhibits the lateral spreading and mixing of a density
current is illustrated by the Rossby adjustment problem (Saunders 1973; Stern 1975,
chap. III}. In the initial state a circular cylinder of radius R, height H and density
p is resting in a frame rotating with angular velocity 4 f, and is surrounded by a deep
resting fluid of density p+ Ap. Gravity then causes the cylinder of uniform potential
vorticity f/H to ccllapse vertically and spread horizontally, with individual columrs
tending to conserve potential vorticity. A balanced geostrophic (eyclostrophic) vortex
may then result. in which the surface front advances only a distance AR ~ (g*H)if !
of the order of the Rossby radius of deformation. where g* = gAp/p. The vortex may
be unstable. and more than one vortex may form if the initial radius is large compared
with AR (Griffiths & Linden 1981).

The adjustment and the overall mixing process is drastically altered, however,
when there is a vertical wall (figure 1). Although the adjustment of the semi-infinite
light fluid is essentially unaltered at large distances § from the wall, a boundary
current near § = 0 must develop to accommodate the geostrophic flow into the wall.
This coastal current transports the light fluid away from its source region, and
thereby allows mixing to occur over much greater distances than would occur without
the boundary (Wadhams, Gill & Linden 1979). What is the width of the boundary
current : what is the nature of the leading edge (nose) of the coastal intrusion; is the
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Fioure 1. The initial stage in the rotating dam-break problem when a vertical wall (§ =0) is
present. The semi-infinite upper fluid has density p and the very deep lower layer has density
p+Ap. The top view (a) shows the surface front advancing a distance AR at position far from
the wall. But the geostrophic flow that develops runs into a wall stagnation. point and a coastal
intrusion must form. The vertical section (b) shows the equilibrium front far from the wall.

boundary current laminar, and if not, how does it mix into the adjacent water? These
questions are addressed here by a combined theoretical and experimental study. The
»xperiments (see §2) consist of lifting a vertical gate (‘dam-break ' experiment) which
was initially in the position of the dashed line in figure 1. The thin layer of light water
(p) in this figure then spread laterally and was deflected to the coast. where a
boundary current finally emerged. The dimensional width § of the latter was
measured, as well as the nose speed of the density current. Considerable lateral
detrainment from the seaward portion of the nose was also observed, this effect being
somewhat similar to the vertical detrainment through the interface of a non-rotating
intrusion in a two-layer fluid (Britter & Simpson 1978; Simpson & Britter 1979).
Benjamin (1968) has given a theory for the latter case. the experimental agreement
being good in a limiting regime where the detrainment is relatively weak. Our theory
of the rotating intrusion therefore begins (§3) with the generalization of Benjamin's
theory. We do not. however. neglect the (experimentally) important detrainment
effect. Another notable novelty of our problem is the additional horizontal dimension
and structure of the fluid behind the bore. We identify those regions where the fow
is approximately steady. and also those unsteady regions in which the important
detrainment occurs. With these additional considerations Benjamin's theory for the
nose speed will obviously not close, and additional constraints on the trailing current
arc necessary. For this purpose we advanee (§4) a model and a similarity solution.
which predicts an upstream width (cf. equations (4.31). ((' 23)) for a so-called " limiting
bore” (Stern 1980) which agrees closely with experiment {equations (2.1). (2.2)). By
combining the model with Benjamin's formula. a nosc speed and detrainment
coeflicient are predicted which are also in acceptable agreement with experiments.

The reader should be warned. however, that the simple theory corresponds to a
different initial-value problem than does the complex experiment. and it will be
argued tha: a connection between the two exists at later times. In view of the admitted
weakness of this argument. an alternative derivation of one main theoretival result,
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involving much weaker assumptions, is given in appendix A. This leads to an upper
bound on the width of semi-permanent intrusions, and any wider initial state could
not propagate along a coast before it suffered great alterations (e.g. bifurcation into
a thin current which leaves the wide current behind).

2, The laboratory experiment
2.1 Set-up and procedure

Although the problem in which a heavy density current intrudes on the bottom of
the rotating tank will have similar properties, it is experimentally more convenient
to work with a surface intrusion so as to minimize Ekman friction and to eliminate
topographic effects due to the slope of the bottom relative to the level parabolic
surfaces.

The experiments were conducted in a rectangular tank which was made from
Plexiglas one-half inch wide. The tank, sketched in figure 2, was 183 c¢m long, 29-2 cm
deep, and 20 ¢cm wide (inside dimensions). Grooves were cut into the sides and bottom
of the tank at various places in order to aliow a sliding gate, of 22-gauge stainless
steel, to divide the tank into two chambers. The grooves were approximately 2 mm
wide and 3 mm deep. Since only one set of grooves was used at a time, the unused
grooves were covered with cellophane tape to make the walls smoother. A mirror was
placed next to the tank at an angle of approximately 45° so that an observer who
was looking down from above could see both a top and side view of the tank. The
tank and apparatus were mounted on the two-metre turntable at the Woods Hole
Oceanographic Institution. The shaft of the table had been levelled to better than five
seconds of arc. A 16 mm motor-driven ciné camera was rotated in synchronization
with the turntable so that films could be taken of the flows in the tank with the use
of small paper floats that were sprinkled on the surface of water in the tank.

For each experimental run the tank was first filled with tap water to a depth of
187 cm, The temperature of the water matched the temperature of the room to within
0-1 °C, to minimize convectively driven flows. A measured amount of salt was then
added to the water, and mixed thoroughly in order to eliminate the slightest
detectible stratification. The gate was then slid into the set of slots that were 49 cm
from one end of the tank. The bottom of the gate was 10 cm above the bottom of
the tank so that pressure equilibration existed. Two pieces of one-quarter inch
plywood were then floated in the 49 cm long chamber, the tank was covered by a
Plexiglas lid, the turntable was brought to the desired rate of rotation, and the salt
water was allowed to spin up for 15 min to a state close to solid-body rotation. The
preparation for the experiment was completed by slowly and carefully siphoning some
coloured fresh water onto the plywood floats in the small chamber until a desired
depth (2, 4 or 8 cm) of fresh water floated above the salty water. The density of the
two waters was not measured directly but was estimated by means of a lincar curve
of density as a function of weight of salt added to the bottom water. Fractional
density differences Ap/p in the experiments were estimated to be 21, 3-2, 4-3. 87,
131 or 17°5 x 1073, All these values are below the densities which were in the table
in Hodgman (1961). The curve we used was a linear extrapolation from the one
and two per cent values in the handbook. Errors are less than ten per cent. and to
this accuracy, temperature and potassium permanganate have negligible effect on
density.

Just before the experiment was started. the Plexiglas cover was removed from the




AT AN )
L AL S .

AORACRIC AT . - . T Bl P
\.A‘.~I. P - LR N N L I P STy EAT Y " . - L R S . T e w e -

oy
Y
-
-

240 M. K. Stern, .JJ. A. Whitehead and B.-1.. Hua

- Top view

( Mirror ‘5
¥
.g Fgam rubber

. wiperd 183 cm >
;:: a9 cms Dat. board ® Clock

Side view

Removabie gaie

2 mm Slot _, ] , 22 8auge S.S. <20 cm>
T 4
r—_- H Adj_uslmeq( for €
f'{ °1°  wiper height o
s -
EE6¢E
NZIR

2.
<

Fiaure 2. Sketch of the experimental apparatus.

tank. the ciné camera was started, and the sliding gate was carefully removed. In

- order to reduce the dripping effect from the emerging gate, a foam wiper was placed
p on each side of the guiding frame through which the gate was slid. The foam wipers
. were positioned 80 as to just contact the surface of the water after the coloured water

had been put in. Use of the wipers and the guide frame in removing the gate resulted
in a less-disturbed starting interface between the light and heavy fluids.

2.2. Measurements and analysis of data

After the gate was lifted, small paper floats were ‘sprinkled’ on the radially collapsing
dye front in the channel. and ciné pictures were taken of the side-view mirror as well
as the plan view.

The method of analysis was strongly tailored after the features of the flowing bore
that were observed. The principal features of the bore (sketched in figure 3) are
somewhat visible in figure 4. The nose of the bore (figure 4a) was not steady. but
eddies peeled off the outer region and were left behind with a much slower
translational velocity than the nose of the bore. On the wall immediately behind the
nose was a ‘neck ', which was often the thinnest and shallowest portion of the laminar
jet behind the nose. Although the neck was visible a sizable percentage of the viewing
time, it was sometimes obscured by the edge of an eddy that had been detrained from
the nose. Behind the neck were two regions. Near the wall an approximately laminar
current supplied fresh fluid to the nose of the bore. This current was bordered on the

»

i-". Mt |
LN .
LT L T

a outside by a region of strong cyclonie vorticity (* vortex sheet ), which separated the
[ current from a region of eddies. These ‘large-scale’ eddies were complicated and
1 turbulent in appearance. Some had been generated from the detraining process at
2 the nose of the bore and some seem to have been detrained further upstream as
d illustrated more clearly in figure 4 (h). Particles in the laminar current near the wall
4 appeared to speerd up and slow down as the eddies deformed the outer edge of the
- jet. but the particles in this current did not reverse direction relative to the nose,
3 while the particles in the eddy region clearly did. There are many instances in the
3
-
.
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FicURE 3. Schematic diagram of a quasi-equilibrium rotating bore far from the source region. The
streamlines show the motion relative to an observer moving with the nose speed é. The relative
mass transport (a) at # = — ¢ is non-zero. The detrained fraction & of the flow reappears on the
other side of the laminar vortex sheet (§ = L). and is left behind as the nose propagates along the
coast,

ciné films when it was difficult or even impossible to distinguish the laminar current
from the eddies. but there are other instances when it was easy to distinguish between
the two. In those cases the eddy activity was small outside of the laminar current.
and the region separating the boundary current from the eddies had a strong shear.
The continuity of this vortex sheet is visible in the ¢iné films, and more so to the
eve while the experiment is running. We have therefore attempted to quantify the
width of the boundary current by measuring the distance from the vortex sheet, when
visible. to the wall.

The measuring procedure was to set up a ciné projector at a set distance from a
piece of white cardboard screen. An investigator (J. W.) would sit next to the sereen
and look for clear instances of the vortex sheet. When one was sighted, dividers would
be placed on the screen. with one point on the vortex sheet and one on the tank wall.
The projector was then stopped as promptly as possible, and the distance from the
span of the dividers measured. With the projector still stopped. the corresponding
wall depth of the dyed fluid (in the 45° mirror) was also measured with a ruler and
dividers. The time and downstream location of this measurement were recorded. as
well as the nose location. This procedure was repeated in each run until measurements
were taken at all positions of a clear vortex sheet. The number of samples in each
run ranged from two to sixteen according to the quality and the subjective
identification of a vortex sheet. We intentionally ran as many extreme values of g*
and f as possible (see table 1) in order to sample a wide variety of parameter space.
so some runs are close to marginal in quality. We emphasize. however. that an
unmistakable difference exists between this “vortex sheet” and the density or dye
front. aside from the fact that a precise measurement of the latter is also ambiguous
and difficult.

The reason for the qualitative difference is quite clear from the observations. Dyed
fluid that entered the nose (figure 3) exited in the rear and was left behind as an eddy
or wave as the nose marched on. Although this wax a major event for the long-time
mixing of density (and also vorticity) in the boundary current. it was clearly a
secondary ” effect. and. in order to determine the primary width of the boundary
current. it is quite reasonable to bias the observations towards a measurement of the
shear lines. The number of “independent ” and usable measurements of £ in each run
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(a@)

(d)

F1GURE 4 (a—d). For caption see facing page.

is shown by the numbers inside the circled data points (figure 5). The plotted [ is
the average distance from the wall of the points of maximum lateral shear in each
run, and % is the average value of the corresponding wall height. The measurements
of [, and £ were confined to a certain space-time interval that is determined by
theoretical and practical considerations. Thus no measurements were taken until
some time after the gate was lifted, and no measurements were taken after the nose
reached the end of the tank and started to wind around the tank. No (ﬂ./i)-
measurements were taken in the nose of the bore, or at very large distances upstream
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Fi1oURre 4. (a) A rotating density current in its early stage propagating along the right-hand wall
of the tank. The image on the top is viewed through a 45° mirror and is a side view of the current
with gravity downward in this figure. The image on the bottom is a plan view. The parameters
are g* = 85. T =154 and H = 87. (b) The same current 18 x later. The properties of the nose,
such as speed. upstream width. and height. have changed little. although the eddies being shed
are a little smaller. (-) The same current 31 s after (a). The current exhibits a great deal of similarity
to (b). (d) After the current has hit the end of the tank. it turns the corner. The side view shows
the depth of penetration of the fluid at the corner stagnation point. and illustrates that the luid
still possesses a significant amount of its original potential energy . (¢) Thix intrusion (plan view) was
at a relatively low Revnolds number. and the eddy that is being shed at the nose is almost laminar.

from the nose. and only a relatively small number of measurements were taken in
the “neck” behind the nose.

Conversion of the ciné film measurements to real centimetres was determined
fiom the image of 5 em fiduciary marks in the side and top images. In both cases,
no correction was made for parallax as the bore moved along the tank. sinee we
estimate that the geometrie corrections are smaller than the uneertainty due to the
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F1aURE 5. Suitable normalized values of height (a), bore nose velocity (b). and bore width for 90°
gate (c) and 45° gate (d) as a function of the hydrostatic number. The numbers in (¢) and (d) denote
the number of ohservations of regions of distinct shear that went into the average.

g* T(= 4n/f) H
(em/s) (s) (cm)  g*ftH (@ HIWy fLghTh @B hege/H
1715 145 4 584 3313 0495 119 0-438
1715 150 4 627 3313 0494 1-19 —
128 20-25 4 85 2862 0-435 112 0375
31 596 4 178 1408 052 098 0-400
31 406 42 7-68 1515 042 074 0-500
85 30t 4 126 2332 0-37 1-25 0571
85 154 87 1:57 7481 0-605 1-65 0314
85 29-4 8 620 6597 0382 164 0-450
42 153 46 124 2022 0763 085 0215
128 305 60 126 5258 0-387 1-37 0-H42
241 80-7 30 16:3 753 0435 082 318
3t 59-3 40 17:25 1409 0-343 1-14 0414
3 606 30 2403 915 0-369 087 0-500
+2 219 40 318 1640 0-632 1-04 0-357
. TagLe 1. 90° Experimental parameters and results.
b .
.
1 . . .
F- subjective factor entering the measurement. Data for the experiments are shown in
1 tables 1 and 2.

The measurements of depth and width were used in the non-dimensionalized
number fL.(g*#) ¥ in the above tables, and the results were plotted as a function of
g*/f*H in figure 5. This latter number we call a "hydrostatic number’ ax it is the
inverse-square ratio of the thickness H of the less-dense fluid layer in the reservoir
4 “and the Rosshy radius of deformation. The reciprocal hydrostatic number is also a
i measure of the slope of the undisturbed front in the vertical plane sketched in figure 1.
In shallow-water dynamics. and in most other large-seale geophysical problems the




* rkﬂ' ———

LTy
P

(5.3 o anamn iy { Ty 'Y"!v
. - . M

e

-

BRce 25 am s D an i g
T -

T

R T A AR T M/ QAT SN AC RedC A SRS i T/ i Sl

Denxily current along the coast of a rotating fluid 245
g* T(= 4n/f) H
(em/s?) o (cm) g*/fH Slg*hyt
175 145 4-4 518 0-48
12-8 20-4 40 843 0-47
31 596 40 174 045
42 209 40\ 318 073
¥H 155 87 1-49 080
85 293 80 578 049
31 605 30 24-03 053
85 30:3 40 12-35 046
128 30-4 60 1248 0-37
42 153 4-6 -t 0-86
31 59-3 40 17-26 0-38

TABLE 2. 45° Experimental parameters and results.

hydrostatic number is large and irrelevant. since it disappears with the introduction
of the hydrostatic assumption. This might not be true for engineering or some
estuarine problems, however. .

Figure 5 shows that when the hydrostatic number is above five, fL(g*h)} is
relatively constant; for the data in figure 5 and table 1 with hydrostatic number
greater than five, the average value is 0-423 with a standard deviation of 0-056.

In view of the subjective and arbitrary factors in the mecasured width, three
reproducibility tests were conducted. Experiments were performed for two initial
conditions: a gate at right angles to the wall of the tank. and another at 45°. The
quality of the latter experiments was somewhat lower, but it was attempted to
duplicate the external parameters (g*, H and f) as closely as possible and to compare
results. Both results are shown in figure 5. For the 45° gate the average value of the
width for g*/f*H > 5 is 0-453 with a standard deviation of 0:051. The most severe
reproducibility test involved the use of a student to re-analyse the movies! Approxi-
mately 50 ¢, of the data agreed with the measurements by J. W. to within 10%,. This
occurred for those runs where the vortex sheets were clearly the most visible and least
ambiguous. There was one period at the beginning of the test where the student was
consistently lower by approximately 50 %. This occurred during one afternoon and
may be due to a conservative streak during that day. The remaining 20 °, wcre also
somewhat smaller than the measurements by J.W., but appeared to be better in
quality. Therefore J. W. repeated his measurements very carefully. and those data
are reported here. These occurred in the experiments which were most difficult to
measure denoted by question marks in figure 5.

Another check on the quality of the data was to look at the ciné films at one sitting
and rate them good or marginal. based upon the clarity of the vortex sheets seen in
the films. (As is often the case, the vortex sheet is easier to see in the laboratory than
it is in the film because the movement of head and eyes aids the perception.) The
marginal ones are labelled with a question mark in figure 5. and they only occurred
when g* was small (21 or 32 em s72). Under the latter conditions surface tension may
generate a surface “stiffness” by creating a surface traction against convergence and
divergence. It is evident that some of the marginal cases were furthest from the line.

The curves for [ in figure 5 have been drawn by eye. and are slightly biased by
the preceding consideration, but the asvmptote at large hvdrostatic number seems
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Ficrre 7. Position of the nose of the bore as a function of time for runs that lasted a large
number of rotation time scales.

to be highly significant and relevant to the theory in the following sections. Thus we
tentatively conclude that there is a unique width for the shear zone for the large
hydrostatic number, with

(gf;': = 0423£0056 (2.1)
for the 90° barrier, and
(gif}{)‘i = 0453 + 0051 (2.2)

for the 45° barrier.

It is conceivable, however, that there may be not one curve, but a whole band of
curves, i.e. the jet width may not be unique but may depend on other factors which
are not within our control - such as the instability waves that form on the front in
the reservoir when the barrier is removed.

This point of view is also suggested by the measurements of bore speed (figures
6a. b). which were only taken for the runs with a gate at 90°. The ordinate is the
non-dimensional displacement of the nose bore from the dam, the abscissa is the
non-dimensional time, and the points are the observations for each run. The
identifying date and run numbers are also indicated. The curves drawn through these
points have smoothed out some small variations in bore speed that may be real. A
decrease of slope with increasing time can be clearly seen in some of the runs, and
after very large times (figure 7) some of the noses stagnate and curve away from the
wall forming a large gyre! The lack of ‘similarity’ of the curves is apparent. For each
curve the extrapolated (small time) tangent has been drawn, and the corresponding
non-dimensional speed é(g*h)~} computed. For figure 6 (a) the mean speed is ¢ = 1-09.
and for figure 6(b) it is ¢ = 1-16. In both figures the variation of ¢ is real, but no
correlation with g*/f2H has been found. Figure 8, however, indicates some systematic
variation of ¢ with the product of the velocity scale (g*H)t and the depth scale H:
and therefore the results (figure 8) have been plotted as a function of the overall
Revnolds number H(g*H)lv='. even though the viscosity was not varied in the
experiment. The implicit assumption here is not unreasonable, because Simpson &
Britter (1979) observe that the nose speed in a non-rotating density current depends
on Revnolds number when the latter is less than 103 The dynamically significant
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FiorRE 8. Scaled velocity as a function of the overall Reynolds number.

Reynolds number may be a proportionally smaller value for three reasons: (i) the
depth of the jet is less than upstream height H (figure 5); (ii) the depth of the jet
varies across the stream and goes to zero; and (iii) the depth of the nose is small and
goes to zero at the leading edge. At large Reynolds number (> 4000) the envelope of
the data tends to ¢ = 1-56 with a standard deviation of 0-05. At smaller Reynolds
number the phase speed is approximately 20 %, less. It is plausible that the systematic
effect of the nose viscosity on the upstream width (figure 5¢, d) is less than or equal
to this 209%,.

3. A quasi-steady theory for a rotating density current

Figure 3 is a schematic diagram of the nose of the boundary intrusion as it is flowing
along in a statistically steady state. The streamlines are drawn relative to an observer
who moves with speed ¢é of the nose of the intrusion (and in this frame of reference
the nose is thus a stagnation point).

Under ideal conditions one would like to consider the light fluid to be separated
from the heavy fluid by an interfacial surface that intersects the free surface (2 = 0)
at the ‘front’; the latter being a free streamline and a vortex sheet. This idcalization
differs somewhat from a more realistic sketch (figure 3) of our cxperimental
observations, which shows part of the boundary flow entering the nose region and
being left behind (defrained) as it folds the front backwards. The sketch in figure 3
illustrates the continuous nature of the fields and replaces the vortex discontinuity
of the free streamline by a strong maximum-shear line (at L) lving outside the
dividing streamline. The width £ that was actually measured in the experiments
curresponds to this strong maximum-shear line. Another dvnamically significant
width is the dividing streamline (figures 3a. ¢), located at distance g, from the wall.
The distance j4 is defined such that the mass transport relative to the nose vanishes
in the interval § = 0 to § = 4. i.c.

riq

Ja Gi—& hdig =0, (3.1)

where # is the longshore (£) component of the vector veloeity ¢ in the non-translating
(f-frame) system, and 4 is the local layer thickness of a twa-layer model. All the
quantities in (3.1) are evaluated far upstream frem the nose (# = — ). in a region
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FiGURE 9. (a) For a non-rotating dam-break problem. the initial-value solution gives a thinning
‘wedge’ for the shape of the intruding light water of density p. (b} The non-rotating bore in the
quasi-equilibrium Kdarmdn-Benjamin theory.

# < §4 where our observations indicate the flow to be approximately steady and
laminar. On the other side of the dividing streamline, however, our observations
indicate a much more unsteady and non-laminar flow. Thus a conservative Bernoulli
function exists for the region inside the dividing streamline, and this function is found
by transforming the equations of motion from the f-frame to a frame that translates
with relative speed é.

If p is the pressure, and if Z is the height of a point above a level surface in the
f-frame, then the é-frame velocity V. satisfies

AV, /di+fkx ¥V, +fkxe = —p~' Vp—g V:.

A Bernouli equation may be formed from this by taking the scalar product with the
solinoidal V, and writing the result in the form

1dV2 dj 4P, 0 gds
sa T wt w T

If the motion on any free-surface (p = constant) streamline is steady in the
translating frame. then the Bernoulli function

B=13V24féj+g2 (3.2)

is invariant, and this assumption will be made for certain regions in the flow.
Reference is first made to Benjamin’s (1968) selective use of the Bernoulli invariant
for the problem (figure 9) of a non-rotating density intrusion. Von Kdrman (1940)
proposed a completely steady solution, but this does not exist. The main region of
unsteadiness is located in the hatched region of figure 9, which region is somewhat
analogous to the unsteady lateral front in our problem. We shall, therefore, follow
Benjamin by assuming invariance of (3.2} iu regions removed from the mixing sites.
Steady relative motion is now assumed on the free-surface streamlines located at
§ = 0.i.e. along the two streamlines passing through the stagnation point. At £ = o

in the heavy-fluid region. the velocity V. relative to the nose is given by @, = —¢.
and the Bernoulli invariant then gives:
1é% = gz, (3.3)
& where £, is the geopotential height of the stagnation point. The other streamline lying

in the light-fluid region yields:
i, =6 +gi . = g5 (3.4)

where ii_, is the veloeity (¥) and £_ is the geopotential far upstream from the nose.




e

S Em £ 2

P

[ v “heven 2

]
250 M. K. Stern. J. A. Whitehead and B. L. Hua
The climination of 2, gives

bi_—é)P+gt , =1 (3.5)
Since the geopotential height of the upstream free surface on the wall is related to
the layer thickness £, by the hydrostatic consideration, i.c. (0+A4p) 2 , = Aph,. one

can rewrite (3.5) as
( g*hq
a,'

i %

F=la  + (3.6)
where g* = gAp/p.

In the non-rotating theory with no detrainment @_,, is a constant equal to é, and
the use of this gives ¢ = (2g*ky)t. Although a mass flux relative to the nose is always
observed (Britter & Simpson 1978), the quantitative effect on é of this detrainment
is small (in a limiting case), presumably because of the strong opposition of
gravitational stability.

But in our problem (figure 3) lateral detrainment can occur without great
gravitational opposition, and the effect is indeed most striking in our experiments.
We will therefore reject the assumption that the upstream volume transport of the
intrusion (relative to the nose) is zero, and the finite ratio of this transport to the

absolute transport, i.e. .
(@ —é) h(g)dy
.L_[h(yy {ati = —o00). (3.7)
j ahdy
0

will be called the detrainment coefficient. Furthermore, 4(— c0. §) is not independent
of §. and therefore additional information is required to determine the wall velocity
_, = d(—ac,0).

The reader may want to turn to appendix A at this point, where Bernoulli
invariance is also applied to the dividing streamline, and where a simple argument
leads to an upper bound on 4. The following argument, on the other hand, claims
to give a sharper prediction of the width of the current to use in connection with (3.6).

é

4. Intrusion of finite potential vorticity

What are the dynamical factors that determine [. ¢, §¢ As a start. we are obliged
to introduce rather drastic assumptions, one of which, (see §4.3), involves a
recognition that the experiment involves a “self-limiting” process in which certain
factors ([, ¢. 8) are largely independent of the initial conditions. Another assumption
in the use of the shallow-water equations

AV/di+fk x V = —g* V. (4.1)

ARI+V-Vh=0 (4.2)

as the starting point. These apply to two layers (figure 1) of slightly different (Ap)

density. the lower layer being relatively thick and passive. The upper layer has

thickness A(£. §. f) and velocity F = (4. #). There is a vertical coast at § = 0 so that

the transverse velocity is #(#. 0, 7) = 0. and there is a free streamline at § = L(#. )

so that A(#, L(#. 7). 1) = 0. The neglect of the friction forces in (4.1) must be kept in
mind. especialiy when one considers explicitlv the nose region.

Relevant initial-value solutions of (4.1)—(4.2) are still difficult to obtain, and we

shall therefore retreat still further to a generalization of Stern’s theory for the
evolution of long waves on a uniform potential vorticity current. Plausible similarity




PP PP ey

Density current along the coast of a rotating fluid 251

assumptions (cf. (4.29) and the last paragraph in §4) will be made which relate the
evolution of the long-wave solution to a corresponding state of the experiment.

4.1. Long-wave equations for uniform potential vorticity
Let us first write (4.1) in the alternative form

VA + (f+ Ok xV = —V(g*h+1V?), (4.3)
C=kVxV, (4.4)

and the conservation of potential vorticity (f+&)/4 is also implied. Therefore, if the
initial state has uniform potential vorticity f/H, where H is the uniform initial
vertical thickness, then

at all subsequent times. The component of V parallel to the coast is denoted by i,
the §-component is denoted by #. and the foregoing equations are made non-
dimensional by the transformations

k= hoh(r.y.t). §=(g*h)tf 'y, #=eNg*hotf 'z,
i = (g*hou. b= elg*holle, §=e"1f~11,(4.6) (4.6)
A=hH, L[=(g*ho¥f Lix.t), k& L.0)=0;

where kg is a given vertical depth scale, and ¢ is the scale value of ecross-
stream/downstream velocities. In figure 3(b). and in that which follows, A, is
conveniently taken as the wall height of the intrusion far upstream in the laminar
portion of the coastal current, and from geostrophy it follows that g*h3/2f equals
the volume flux.

When the non-dimensional equations are written in Cartesian form, and when the
long-wave (€ -- G) limit is taken. the result is

Cu Cu ¢
MY (IR DRI 1,2) = 7
3 (l ay)c+ax(h+2u) 0. (4.7)
Ch
W= (4.8)
<y
A A hr
(-ﬁ chu che - (4.9)
&t dr Oy
uh
_e_n 4.10
y H ( )

It is easy to show (by taking the y-derivative of (4.7)) that (4.7) is satisfied at all y
if it ix satisfied at any one particular y. and if (4£.8)-(4.10) are satisfied at all y.

Equations (4.8) and (4.10) give an ordinary differential equation for . and if U'(x. 1)
denotes the value of w on y = L (where h = 0) then the solution is

_ . L—y ... L~y
hir.y.t) = Il[l—mshTi—:l+H5( sinh it (4.11)
n(r. oy t) = —Ilhillh-lily+('('()ﬂh—li—j (4.12)
r.y. : i sh = A2
N vim 123

L. .
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The zero-potential-vorticity limit H=' >0 yiclds Stern's (1980) results with
h=U—p—-YL—yPandu=1"—L+y.
4.2 Time-dependenl equations
When profiles of w and & are substituted in (4.7). and the result evaluated at the
particular y = L (where 1 —Qu/Cy = 0), we got
cU . oU 0L

wtUs—5 =" (4.13)

Note that v appears only in (4.7), and its coupling with (U, L) only appears via the
boundary eonditions, or via the integrated version of (4.9). viz

o [uro D (Lo
aJ‘o ‘y+$J‘o uhdy = 0. (+.14)

The substitution of (4.11) and (4.12) in this, and the simplification of the result using
(4.13). yields

o= (v ssinn )2

4 4 4 4 ‘\ 4
+[(’H‘5sinh %{—cosh é;+ l][UH -4 cosh L—sinh —I—] o

Hi Hi]| ox
L L L cU
TH -4 — gl —1|—
+[LH cosh 7l sinh m][cosh—m l] Py (4.15)

which together with (4.13) form a complete set of quasi-linear hyperbolic equations
for the position of the front L(x, t) and the velocity U(x. t) along that free streamline.
The thickness of the fluid on the wall as obtained from (4.11) is

h{x,0,t) = H[l—cosh%]+1ﬂ(,’sinh£;, (4.16)

and by using our normalizing condition A(—c0.0.f) =1 we get the boundary
condition for the upstream state section (curve PHWQ in figure 10):

l=H[l—('oshTI;—¥]+H¥["sinh’—l;; at r=—o0. (4.17)

The non-dimensional H is inversely proportional to the potential vorticity. and the
simple case of zero potential vorticity may be obtained from (4.15) and (4.17) by
expanding the hyperbolic funetions in an L/H! power series. By neglecting small
terms of order L/HY we then get

A B YA
"I‘+(('—;l,)(l'—L)ﬁ‘—"ﬂh(l'-ll) ‘\( =0 (4.18)
ot cr

or

{

1= (U~}L) at r=-—a. (4.19)

4.3. Similarity solutions
There are no solutions of (4.13) that preserve their form, and the ‘simplest” solutions
are those in which the functional relations between L(x. ). '(x. 1), h{x. 0. 1) are
independent of time and position r. (We also note that the experimental relation
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between L and A is ‘universal’.) Therefore, we now look for solutions such that
is some (unknown) function of L(z, t) alone, i.c.

U= U(L). (4.20)
U oL

— = U(L)=, 2

= Ul 4.21)
U oL

— = U(L)=—.

= U5 (4.22)

Upon substituting this in (4.13) and (4.15) we obtain two simultancous quasilincar
equations for (0L /0t, 0L /0x), the first of which is

oL UU'(L) ol -
YT —tar (4:23)

This implies that L (and U and A(x. 0, ,)) is constant relative to an observer moving
with the local propagation speed

de__ U

dt — 1—=1/U(L)
When (4.20) is used in (4.15) we obtain a second quasi-linear equation for ¢L/0t and
¢L/¢x. Elimination of these two derivatives from the two simultaneous equations

gives a quadratic equation for U’. After using some hyperbolic trigonometry to solve
for 1/('"—1), the roots of this quadratic can be expressed as

dU _  (U/HY) cosh (L/2HY)

(4.24)

= 25

dL ! a+(a?+b) (4.25)

= sinh L/Hi)[c wh— — U inn ] 4.26

a = sinh ( 08 YLk SHI (4.26)
] 4 4

b = 2sinh (L/HY) [-%coshﬁ—sinh é{l (4.27)

iquation (4.25) gives two (1) intersecting families of curves in the (U, L)-plane. and
the intrusive solutions of interest pass through the nose point L = 0. The two families
are given in figure 10 for uniform potential vorticity H = 2, and comparison with the
zero-potential-vorticity curves (figure 11) shows that there is not much difference in
the vieinity of L = 0.

Corresponding values of L, U far upstream must correspond to one of the points
(say ) lving on the dashed auxiliary curve in figures 10 and 11. Through this point
P. pass two (1) solution (4.25) curves, one of which represents a *wedge ' and the
other a "bore " intrusion (Stern 1980). A wedge solution @ passing through P has a
local propagation speed that increases towards the nose, so that an observer moving
with the nose sces the wedge get thinner with time until frictional forces eventually
become dominant in the nose region and slow the nose down. Thus all the *wedges”
have a divergent energy flux in the nose region. and these solutions are apparently
irrelevant for the model we seek. The © solution (curve PS). on the other hand. can
be shown (see Stern 1980) to have a local propagation speed that decreases with L.
and the nose of this bore-like intrusion advances slower than the rear. Thus an observer
sees the front steepen with time. whereupon the short-wave terms neglected in this

0z
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Uy

Bore

[~

U=y2 tanh (L/2)
s T 7
T =2 tanh (L/2VD)

k i 1 ——
00422 V2 L

Fievre 10, The trajectories of solutions in ({7, L)-space for non-dimensional potential vorticity = 2.
The limiting bore solution corresponds to the line OW and the long-dashed line corresponds to the
apstream condition (4.17). which any solution must lie on.

Bore

0 0-418 2 1

Fravwre t1. The trajectories of the solutions in (', L)-space for zero potential vorticity.
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theory become important and the “shock’ modifies the nose. Although these solutions
might be relevant, we note that there is an entire family of bore solutions.
corresponding to all the P-type points, and further specification is necessary.
Consider the nose region (L = 0) of the current, and replace the hyperbolic
functions in (4.25)-(4.27) by the leading terms in a small-L expansion. The result

dal 20/

dL.~ T LA 2(U=- D)
is valid for small L and all H. This relation also holds for all L when H! -> 0. The
bore solutions are obtained by using the — sign.

Equation (4.28) is infinite at L = 0 if U(0) is finite, so that the frontal slope
oL ol

- = l/” IJ -1 N
aal,, =

(4.28)

will vanish if U(0) > 0. Under these “unrealistic’ conditions, a thin nose (0L /0x = 0)
exists at all times at L = 0 and, furthermore. the shock which will occeur for this
solution will be located behind the nose. The only exception oceurs for the bore
solution satisfying the end condition

U©0) =0, (429)

for then (4.28) is finite at L = 0. 0L /Cx can then be finite, and 9L /0x = o0 can occur
first at the nose. This (4.29) *limiting bore” also has the property that its upstrcam
width is maximal among all the intrusions that propagate as a bore. Initial states with
a greater width have to adjust so that a thinner portion propagates down the coast,
leaving the thicker portions behind. Further discussion of (4.29) appears in §6.

The maximum width of this limiting bore is found by integrating (4.25) with the
— sign:

au I (2U/HY) cosh (L/2H}Y)

dL a—(a?+b)t ' (4.30)

and by using the boundary condition U(0) = 0. The resulting curve OW is extended
until it intersects the upstream state curve at point W (figure 10).

For zero potential vorticity, Stern (1980) found that the abscissa of the latter point
W is (figure 11)

L=0418 for r=—w (4.31a)
For tinite H (4.30) was integrated by a Runge—Kutta scheme, and the result for

“H = 2 is the curve OW in figure 10. The upstream state curve (4.17) is RQW, and

the point of intersection W corresponds to L = 0:422. A number of values of i were
taken in the range 1 < H < oo and the computed L lies in the range

0418 < L(—o0) < 0-426. (4.31h)

Thus we conclude that the limiting bore width L >~ (0042 is essentially independent ¢
potential vorticity.

The foregoing long-wave theory is obviously not uniformly valid. and it will fail
when the tirst shoek forms (at the nose). At that time it is reasonable to suppose that
the short-wave theory ((4.1) and (4.2)) will modify the entire nose region and
accelerate the nose. But it is reasonable to assume that there will be no modification
upstream. This means that the value of L in the latter regions will equal the
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long-wave-theory result even though the nose is more drastically modified. Thix
assumption is testable in principle by integrating (4.1) and (4.2) numerically. The
non-limiting bores (U’(0) = o), on the other hand, will break first behind the nose
and will probably evolve into a more complicated structure (e.g. separated flow).

5. Quasi-steady nose speed and detrainment coefficients

The limiting value of the nose speed (in the post-steepening phase mentioned above)
must be consistent with the upstream mass flow, and with the Bernoulli condition,
i.e. (3.6) and (3.7). The i(y), h(y) appearing in the latter are to be evaluated far
upstream, and, according to the main assumption at the end of §4.3 are given by the
long-wave theory.

The calculations are given first for zero potential vorticity, (H~! -> 0), in which
case (4.11), (4.12) and (4.17) reduce to

w=U—-L+y, h=UL~-y)— L—-y)?: 1=UL-3}L? at x=-— o0,

and from these we get

L
J-hudy=§h’(0)=§ at r=—o0,
0

L
I hdy = JUL*—}LP= 3L+ AL° at z=—ow.
[]

The wall velocity is then u(—o~, 0) = 1/L—3}L. Since L = 0-418 (4.31a). (3.6) and
(3.7) vield — 1-546 (5.1)

& = 0-332. (5.2)
For finite potential vorticity, one has

Y= (1—H)cosh L/HY+ H

HismhL/HY % #=—2 ¥=0. (5-3)
L
J hudy = }h*(0) =4 at z=-o00, 5.4)
0
L 1—2H L -
L hdy = H[L+ Hisinh L/H <coshm—— l)] at = —00. (5.5)

When H = 2. we have found that L = 042 (figure 10), and the values of (3.6) and
(3.7) are then computed to be ¢ = 157 and & = 0-32. For the whole range 1 < H < o0,
the values of (. 8) do not differ by more than 39, from the above values. Thus we
conclude that the nose speed. detrainment coefficient and boundary-current width
are essentially independent of the potential vorticity for a given volume transport
(i.e. hy).

We have also investigated (appendix C) the effect of a finite bottom layer. and found
that this increases the range of widths of the boundary current to

0413 < L(—0) € 0:516.

and L(—c0) = 0-43 when the total depth is twice the upper laver depth (k) and when
H = 2. Under these conditions (" = 1-56 and & = 0-34. Thus we conclude that the
houndary current width, speed ¢. and detrainment coefficient are insensitive to the
lower-layer depth as well as to the upper-layer potential vorticity.

[ SO S P N S
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Ficrre 12. Sketch of the evolution of a bore, as modelled by the present theory. At early
non-dimensional times (¢ < ¢,) no shock has formed and all characteristics flow toward the right.
The dotted trajectory is the position of the nose. At slightly before f.. a shock forms at the nose
if the solution is that of the limiting bore. However, for the "bore " class of solutions, information
from the shock does not flow to the left. so trajectories of characteristios to the left of the bore
are unaltered.

6. Critical remarks and conclusions

A dvnamically consistent model of the evolution of a coastal intrusion has been
developed, starting from an initial configuration in which the distance of the front

from the vertical wall varies slowly in the downstream direetion. The unigueness of

(L. ¢) depends on an assumption. the physical significance of which may be argued
in a slightly different way from that used in the text.

Suppose that at some initial time we have a front that varies slowly in # from
£ = — 2 to the nose point £,. We seck self-similar solutions (4(#, L 0. 6y = C(Ly)
of the long-wave equations, subjeet to certain side conditions. wheh will evolve into
the limiting observable state. The local propagation veloeities are required to decrease
towards the nose. for otherwise the initial state will develop into a thinning wedge
and the solution will be greatly modified by friction. The proper solution must
therefore tend to develop a shock. which, according to the long-wave theory, forms
first at some point ({,. x,) in the phase plane (figure 12). The “early-stage” (long-wave)
cquations obviously cease to be uniformly valid at this point. and the more exact
cquations (4.1) and (4.2) must be used to continue the solution into the intermediate
stage. The next stipulation for our particular solution is that there be no “upstream
intluenee ™, in the following sense. Let a,(f) be that straight line which extrapolates
the nose position as computed from the ecarly-stage equations. We then require that
the solution at all (. $)-points to the left (x — (1) < 0) of thisline remain at the values
given by the carly-stage equation. Implicit here is the (theoretically) testable
assumption that the carly and intermediate stage can be joined in the vieinity of the
line wy(f). such that the shock forms first at the nose. Otherwise, the early-stage
solution will wof be uniformly valid for all &+ < o (1). and such an “interior’ shoek
(r1) < arp(t)) will not evolve assimply as the solution being proposed. As mentioned
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following (4.28). a shoek at the nose implies that o /d L, must be finite at L = 0, and
thix boundary condition closes the early stage problem. Although the corresponding
nose speeed ixzero, this will be greatly modified by the later stage. The upstream width
L. on the other hand, will not be altered, and we have shown how the later-stage nose
velocity can be computed by an adaptation of Benjamin's theory. The mathematieal
existence of such a simple solution has, of course. not been proven.

The question of whether this “limiting bore™ ean be reatized does not depend
eritically upon geometrieal similitude between the initial state of the experiment and
the theory. The initial-value problem posed by the experimental set-up is theoretically
intractable (in our opinion), and only the later stages of the evolution requires
rationalization. We have shown that the width L of the bore that finally emerges in
the dam-break experiment (0-42 + 0-08) is in acceptable agreement with the theoretical
model. The same is true for the nose speed (5.1). and the detrainment coeflicient (5.2)
is also accounted for qualitatively. (The numbers are insensitive to the potential
vorticity, and rather insensitive to a second layer of finite depth (see appendix (7))
We therefore conclude that the limiting bore is approximately realized in the complex
adjustment process that occurs at the coastal stagnation point after the dam is
broken. and when a constant-velocity boundary current is found. We have no
explanation as to why this should occur.

Other types of coastal intrusions (i.e. solutions) can perhaps be realized by different
experimental set-ups. Experiments in basins larger than ours would be desirable to
test the Reynolds-number dependence suggested by figure 8. Such experiments may
show that the downstream distance £ is an important dimension. as is the case in
the downstream spread of a non-rotating turbulent jet. A statistically steady
source—sink experiment in a rotating frame would be desirable to resolve the “large’
scale eddies that we see. and the averaged profiles should climinate the subjective
element that enters into our determination of the width of the boundary current.

The general aspects of density currents discussed herein may be oceanically
relevant, even though coasts are not vertical (the topographical effeets must be taken
into account (Stern 1980, p. 701)). We have in mind the formation of surface bores
during spring runoff, and the formation of abyssal bores during the intermittent flow
over the sills (e.g. Denmark Straits, Anagada—Jungfern Passage. Gibraltar Straits)
that separate basins with different water masses. It would be unnecessarily restrictive
to regard the bore as merely a starting (transient) phenomenon. It may occur at any
boundary where there are strong longshore density gradients. even when these are
intermittent features of a stationary process. The longshore fronts may form and
dissipate (rather quickly). with the whole process being an important part of the mean
boundary current. Such is the impression we get from the experiments, whercin the
fluid detrained at the nose as well as the frontal instabilities give rise to a larger-scale
mean baroclinic boundary current.

A substantial portion of the work was completed while the authors were in
attendance at the Summer Study Program in Geophysical Fluid Dyvnamices at the
Woods Hole Ocear:ographic Institution. The program is supported by the Office of
Naval Rescarch under contract N00014-79-C0671. Some of the latest experiments
were conducted with support of the Oftice of Naval Research contract
N0001481-(-0010. The authors are grateful for the skilled laboratory assistance of
Robert Frazel and want to thank Nathan Paldor for his analysis of the data. This
paper is Woods Hole Oceanographic Institution Contribution no. 4824,
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Appendix A. A general constraint on the width

Following the remark made at the end of §3. we now examine the consequences
of assuming invariance of V2 + fég+ g2 (3.2) on the free-surface dividing streamline.
At one end £ = — 0, we have V2 = (d4—¢)? where dg is the f-frame velocity on the
dividing streamline far upstream from the nose. and £4 isthe corresponding free-surface
height. The datum surface for measuring the latter quantity is the parabolic level
surface that passes through the undisturbed free surface at £ = + c0. The dividing
streamline under consideration must also pass through the nose stagnation point at
which V.= 0. § = 0, and the height is £ = %,. By equating the Bernoulli functions
at the two ends of the dividing streamline we get

Yay— 6> +gia +fE§a = 9és.
Using (3.3) to eliminate 2, yields
Mg —0) +giq+fEgq = 1%

Now Z, is a positive number (proportional to £ if the lower layer is relatively deep),
and therefore the above equation gives the important inequality fé §4 < 1é2, which

becomes
!;d
'[ ih di
A la — [} —
Jha < ¥ = > (i
J hdj
¢
when (3.1) is used; it being understood that the integrals are evaluated at # = — c0.

The terms that have been consistently discarded in the formation of this inequality
from the preceding equations are believed to be larger than the terms (unsteadiness
and friction) neglected in the primitive equations, and therefore we have high
confidence in the upper bound for g,. This involves no far-reaching assumptions, such
as have been made in the text to obtain an explicit equation for the width of the
intrusion.

Since the right-hand side of the inequality is certainly less than half the maximum
#(y). we conclude that the upstream Rossby number based on maximum % and §,4
must be greater than two, for a quasi-laminar bore to propagate along a coast. Initial
distributions of density having widths larger than that permitted by the above
inequality must therefore suffer a profound readjustment (such as bifurcation) before
the density current can propagate.

If the lower layer is very deep. so that the corresponding current in the rotating
frame is zero then @ = —(Ap/p) (9/f) 0h/0§. Upon substituting this and noting the
geometrical inequality

Ud

A(I

b > " bt = /90043
o

where A, is the upstream wall height. we get

A (!]"”‘lo)i
Ya < .
Ya f\" 2

This states that the laminar bore width g4 (which we interpret to be the £ measured
in our experiments) must be less than 0717 times the Rossby radius of deformation.

0

g* = glp/p.
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Appendix B. Some additional features of the evolution of the solutions

Although this paper is primarily concerned with the leading edge of the intrusion,
the nature of the waves that can propagate on the trailing front are also of interest.
This subject has been studied by Stern (1980), for the case of zero potential vorticity,
and the modifications required by a finite potential vorticity are given below.

The discussion is based on the properties of the similarity solutions (4.25)-(4.27).
which will be summarized here. Typical solutions of the two Riemann-invariant
families (1) of (4.25)—(4.27) are given in figure 10 for a non-dimensional potential
F vorticity H = 2, along with other auxiliary curves. A comparison with the zero-

. v’u-,v-.y Y v'ﬁr
A ']

Cmte ane o
.« 20

potential-vorticity case in figure 11 yields no qualitative differences.

A curve such as I’S in both tigures corresponds to propagating bores as defined
{ by Stern in which the upstream velocities are larger than the nose speed and in which
the energy flux converges towards the nose. The wedge solutions such as curve SR
have the opposite behaviour, thai is the thickness of the nose decreases with time.
B The functional relation between L(x, t), U(z, t) and k{r, 0, 1) is independent of time
r‘ relative to an observer moving with the local propagation speed given by (4.24), and

o which for finite potential vorticity is given by
3
¢ U L L
2H} g —si
: Q‘_ZH [m(oshm ‘Hl’lhm] (Bl
t dt c+dl ' @)
i‘ = | h L
¢ =]4cos m,
- '.31/>U Lo L]
d—ZSmhmRsmh SHl) i cosh 2H§+2(08h2_[i{

L cosh o —sinh &
J71 3RS Y77 B Y77}

For H = o0, one regains the zero-potential-vorticity case

{ dr 1L
b
?

@ S TE(L2U<LE (B 16)

Other curves in figures 10 and [ that limit the regions of physical meaning are
also drawn in the phase space (I, L) and are listed below.
The possible values of the upstream state of the current are given by the curve
" PQR. which is obtained by setting A(~0o0,0.f) =1 in (4.11), and thus we have

’
E 1+H<msh%—l>
. U= ; (B 2)
i Hisinh 7
{ when H = o this reduces to Stern’s results
1

= 1 4.

t { 7 +11

Nolutions of physical meaning must lie above the curve OB, which corresponds to
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the seetions of the boundary current where the depth at the wall goes to zero, and
which isx obtained by setting k(r. 0. 2) = 0in (4.11}):

L
T = M} :
The limit for zero potential vorticity yields
=14l

(‘urve OR is the locus of sections where the low at the wall reverses. and is found
by setting u(r, 0. 8) = 0 in (4.12):

l'=Hi<tanh[—l;§>. (B4)

The limit for H — oo yields "= L.

Many of the conelusions for the zero potential vorticity are not changed for non-zero
constant potential vorticity, as the illustration below for the quasi-geostrophic wave
shows.

Let us consider a boundary geostrophic current with a front that lies parallel to
the coast in the interval — o0 <o < + 00. If the current is unidirectional. then the
largest possible width will correspond to the point R in figure 10, i.e. to the value

H
o1 (B 5)
which is found by intersecting the upstream-state curve (B 2) with the locus of
sections where the flow reverses at the wall (B 4). If this basic state is perturbed by
a wavelike motion corresponding to a similarity solution such as the (+) Riemann
invariant passing through R. then the local propagation speed (B ta) will have
opposite signs for sections of the boundary current lving on cach side of curve OR,
ie forawidth L > or < Lg. If L > Ly, then the local propagation speed (B 1a) will
be negative since Uy (L) lies below the curve OR and will increase in magnitude
ax L. — L inereases. Therefore. the front will steepen on the upstream side of the wave
and the amplitude dispersion depending on the boundary-current width will lead to
a backwards-breaking wave. Moreover. one can verify from the expression of the
transverse velocity dL/dt along the streamline.

A RL UL

Ct cr t=U"¢x

Lg = HYarg cosh

It

and by evaluating oh/Cr from (4.11).

(.l’,, _ $s Il—.’/ I IJ-!/] (-\Iz
(,J_—l: Hzsinh i +1{ (().\h—”T =

that » = {ch/Cx],o,, at point R (since {77 >~ 0) and the wavelike motion is quasi-
geostrophic for both longitudinal and transverse veloeities. Thus the discussion above
ixindependent of the finite value of constant potential vorticity. and the generalization
of “the other waves and blo king waves™ as discussed by Stern (1980) s also
straightforward.
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Appendix C. The effect of the finite bottom-layer depth

Although the thickness of the heavy fluid in our experiments was an order of
magnitude larger than the thickness of the intrusion, there will be some vertical
compression of the heavy fluid columns as the bore passes over them, and it is of
interest to investigate the feedback. For this purpose the rigid bottom of the tank
ix assumed to be a level surface so that the Huid in advance of the nose has unitorm
thickness and a uniform potential vorticity. The non-dimensional value of the latter
i denoted by 1/, whereas 1/ now denotes the potential vorticity of the upper
layer: both of these being based on kg as the unit of height. 1f /(. y. {) denotes the
pressure on the upper 2 = 0 surface. and Fy(x, y. t) the pressure on the bottom surface,
then the generalization of (4.7) and (4.8) to the two-layer case is

"u—("‘"w)”x="(Pl"'%“f)p} (1)
Uy — (1 —ug ) vy = —(p2+%u§)y-
U =—(p1)y. U= —(pqg)y- (¢'2)

The hydrostatic relation connects the upper-layer thickness A with the pressure
gradients:

Vp,—Vp, = Vk, (C3)

and thus the climination of p; and p, in (C 1) and (C 2) gives
(uy—ug),— [(1 —uy ) vy — (1 —uyy) 1] = — (h +{ui—juj),. (€4
(uy—uy) = —h,,. (C5H)

The continuity relations for the two layers are

hy+ (huy), + (hv,)y =), (¢ 6)
—hy+{(Hy—hYuy], + | (Hy— h)ey), = 0. (7
and the potential-vorticity equations are
1=uyy 1 (9
H,—h H,

The top layer extends from y = 0 to y = L(x. t), where h = 0, whereas the bottom
layer extends from y = 0 to y = o0 with a non-analytic behaviour at y = L(x. (). The
circulation theorem precludes a vortex sheet in the heavy fluid. and thus u, must be
continuous on either side of the front. Moreover (' 9) implies u,, = 0 for all y 2 L.
and therefore

M 0=uy at y= L) €10
ay - v T " Yy = X i), ( )

for otherwise u, would be infinite at y = 0.
The solutions of ((* 5). (" 8) and (C 9) that satisfy the y = L boundary conditions

(" 10) are L—y

HY

(C11)

hir.y ) = H(l —cosh LT_I.“?—I)+H“.'sinh
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lL-
u,(.r._:/.l):;TII‘(,/—IJ+I')+#(—II!siuh ”, +l coxh ”,’). (c12)

H 1 : 7]
ey = (y—L+U)y— =\ — lI-':mnh e uNh '~>. (S K3
broy )= gt = l( i it
where

HH,

H= g+,

now denotes an ‘equivalent depth’, and U7 = u,(r, L. t) as previously.
To obtain the long-wave equations for (I'. L) we will evaluate (C 4) on y = L where
Cu,/Cy = 1. Quy/Cy = uy = 0, and therefore

[(y —up) byt +|(h+2"|)x|u-l +|vy]yer, = 0. (C14)

We will also use the integrated version of (' 6) and (' 7). or

L(x.t) L(r.t)
j h,dy+j thu,), dy = O,
0 0

(C15)
L(r.) L(r.t)
—J ’I,I/!/-f-f ((Hy—Muy) dy+1H,0,),0, = 0.
1] 4}
Eliminating between (C 14) and (' 15) gives the following system:
{ (1rn
[(uy = )y lymr, + [+ d0}) 2 ]y_L+H J’ hedy
L(z.t) )
—J uudy+-——j (huy), dy = 0, (' 16)
[} H? [}
h L(”)hd o L(u)h d
— — =0. 17
2, "’+ax.[, u, dy 17

When the profiles of w,(x. y. 1), h(x. y. 1) and uy(x. y. t) given by (C 11)—(C* 13) arc
used to evaluate the above terms, and when the result is simplified. we get

-
nM™ et N

{ L L H L eC
(((Nh )(H%(mh smhﬂé)[l +” ((*()ahm— l)]}?T

U .. L L H L
(mhmh e —cosh H%+l>(”£(mh 7L smh” )(l +i[:((u.\hm—l))

T———— -
o
+
f‘»"‘w\

H U U L U L L oL
L. = {—cos = 0. ‘
+ HZI“\Inh ”5(”1 7l <m(oshl—£ \mhlli))}“ (C 18)
U oLl H L LU ) L
- MR T Mol ai Jadl A — 0N
| z R + ~ {l 1. H [”i-}-%mh 115(115 \mh‘_,—lg u)\hmﬂ}
o
cLH L 2L ' U L L
& — - H} wosh—;=2 sinh-—; ]| = 0. 1
e [u& bxinh g7y — gy vinh m( e ""hué)] (1

P U
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One can verify that for H/H, — 0, i.e. in the case of a boundary current overlying
an infinitely deep second layer, (C 18) and (C 19) are identical with the system found
in §4, (4.15) and (4.13) respectively. Terms multiplying #//H,. i.c. due to the coupling
of the bore with a second laycr of finite depth, give an extra contribution of order
L2/H, for small L/H}.

The similarity solutions satisfying the funetional relation (4.20) obey the ordinary
differential equation

cosh L [ H —-ginh L (U cosh L —sinh L )]
ﬂ;lHWzm 7 71 AV 7] Sy 71 Sy 71
dl. ~ at (a®+b)t '

(€ 20)

a—(hi{whl L sinh - H bt U I *lbﬂ
= sin Hi O 2”* m“ln IZHQ —8in 0’]% !—II((N 1175— sin lll—r .
(C21a)

U L ., L
b = 2sinh H4<Hi(0qhH smhm>

H L . LU L L
X { 1+ E [cosh e 1 +sinh -—ﬁ*(mcosh i sinh 7 g)]

HN* L L U L . L .
_(ﬁ) smhm (cosh T l) (-mcosh i~ sinh ﬁ{)} (C 21b)

When putting H/H, = 0 in (C 20) and (C 21), we recover the system found for an
infinitely deep second layer, (4.25) and (4.26). Again the leading terms in an expansion
in L/H} in (('20) near L = 0 are identical with those previously found for the
zero-potential-vorticity case. Therefore the discussion concerning the nose boundary
condition still applies, i.e. we need [7(0) = 0.

The upstream width of this simple bore will be found by integrating (C* 20) using
(4.29). and by finding the intersection with the upstream-state curve

1+ H((-nsh %— l)
U= (C22)

iﬂwnhm

obtained by setting k(—o0.0,¢) =1 in (C 11).

Table 3 gives L(— 00) as a function of the initial equivalent depth H and the ratio
H/H,. However, for a given H, not all values of H/H, are allowed. since H, > 1 and
H, = 1. The entire range of L(—o0) in table 3 is

0418 < L(—oc) € 0:516, (*23)

and thus the coupling with a second layer may inerease the width of the boundary
current up to 25°,. The largest values of 1{— oc) are found for small /1 (05 < [l < 1),

i.e. for values of both H, and H, close to 1. The maximum of L(— o) is reached for

H=035(H,=1and Hy=1).

However, interesting values of H,; and H, would be closer to 2 (remember that the
upstream height has been chosen for normalizing the heights) and in this range the
width of the boundary current remains within 109, of the value found for the very
simplest case of one layer with zero potential vorticity. The new profiles of current
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%”2 1 o3 (130 o7 o9

H

5 - - H16 — -

075 — (-450 0470 (+496 —

1 0431 0442 0454 469 0488

2 0425 0-429 0435 0440 0446
10 0-420 0421 0422 0422 0423

TaBrLe 3. Values of upstream width L(—oc) as a function of initial equivalent depth H and of
ratio H/H,

given by (' 11)~(C 13) have also been used to evaluate the nose speed ¢ and the
detrainment coefficient §. For the upstream wall velocity we have

H (1 —Il)cosh%+ll
== (U—-L)+—4 at r=-w, y=0. (C24)
H, H, . L :
Hismhm

where {7 is defined by the upstream condition ((' 22). The other quantitics {4 dy and
f/: u dy neceded for (4. ¢) have the same formal expression as (5.5) and (5.4) respectively .
but in this case H is the initial equivalent depth. Choosing H, = H, = 2 and
L(—o0) = (143 yields for ¢ and ¢

¢ = 156, (€ 25)
& =034 (€ 26)

Again we conclude that the bore speed seems to be independent of the structure of
the current.

REFERENCES
Britrer. R, E. & Siveson. J. K. 1978 Experiments on the dynamics of a gravity current head.
J. Fluid Mech. 88, 223-240.
Bexsamin, T. B, 1968 Gravity currents and related phenomena. J. Fluid Mech. 31, 200-24%.
Grivritas, RO W. & Linpes, P F. 1981 The stability of vortices in a rotating. stratitied Auid.
J. Fluid Mech. 105, 283-316.
Hopaman. €. D, (ed.) 1961 Handbook of Chemistry and Physics. 43rd edn. Chemical Rubber.
Kairwis. T, v. 1940 The engineer grapples with nonlinear problems. Bull. Am. Math. Soc. 46. 613,
NSavsNvers, oM. 1973 The instability of a baroclinie vortex. J. Phys. Oceanogr. 3. 61-65.

Stvesox Wb KB & Brirrer, R E. 1979 The dynamics of the head of a gravity current advancing
over a horizontal surface. J. Fluid Mech. 94, 477-495.

Nrers. M. K. 1975 Ocean Circulation Physies. Academice.

STERN. M. K. 1980 Geostrophie fronts, hores, breaking and blocking waves. J. Fluid Mech. 99,
687 703,

Wannaws, PoGiun, ALK& Lisnes, PFC 1979 Transects by submarine of the east Greenland
polar front. Deep-Seq Rex. 26A. 1311 1327,




i i—.Tvv'*, y

Yivﬁ—v 2 o 4
A .

Dae~ §

AR L i ML r S DA I e I A —— Tr—
s R . Lt e e A e o e T S T N 1

<, - . e .
-t e . e R I SN )

LARGE AMPLITUDE LONG WAVES IN A SHEAR FLOW

MELVIN E. STERN
NATHAN PALDOR

Graduate School of Oceanography, University of Rhode Island,
Kingston, Rheode Island 02881

ABSTRACT

Large amplitude disturbances in a boundary layer shear flow are
censidered in an inviscid and longwave theory. Initially weak horizontal
cenvergences are concentrated and amplified in time, thereby increasing
the maximun norral velocity (W) until it becomes comparable with the
horizontal velocity. The effect is first demonstrated in a two dimensional
mode¢l having piecewise uniform vorticity. The leacding edge of the compact
disturbance propagates downstream more rapidly than the trailing edge, but

no "quie:" zone appears in the center. Instead V=P and a tendency for
wavebreaking occurs. The evolving large J/ pattern is consistent with
observations ! of the laminar spike just prior to its breakdown. The
longwave theory is generalized to three dimensional motions, and the

effect of an inirial spanwise divergence is such as to rationalize the

iritial vorticitv assumed in the two dimensional medel.
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I. INTRODUCTIOR

Because of its laminar-like initial behavior the "spike" in the
experiment of Kovasznay, Komoda, and Vasudeva 1 is perhaps the simplest
member of the "spot'" familv which have been the subject of many recent

investigations of the transition to turbulence. 2,3,4

When a small amplitude -
and spanwise modulated Tollmien-Schlichung wave is generated 1 by means

of an oscillating ribbon in the boundary layer, the wave amplifies downstream
ard the spanwise vortex stretching produces the anomalouslv high vorticity
region shown in Fig. la. The spanwise variation of this vorticity at a

later stage of development of the disturbance is shown in Fig. 1lb. Notice
that the normal velocity field is weak and broad in Fig. lc, which corresponds
tc the same stage as Fig. la. But this field concentrates and greatly
increases in magnitude in Fig. 1d, which corresponds to a later stage of
development than either Fig. la or Fig. 1b. The vorticity isopleths (no®
shown) corresponding to Fig. 1d show that the maximum value increases

cnlyv by a factor of twe, whereas the normal velocity increases sevenfold

from Fig. lc to Fig. 1d. Moreover, the lateral scale of the vortex
stretching effect is much larger than the scale of the intgense updraft

(Fig. 1d), and therefore it is hard to see how the latter effect can be

explained solely on the basis of the former effect. We shall therefore inves-

| tigate first the abilitv of a two dimensional (vorticity conserving) model, based

on an initial state resembling Fig. la, to explain the large normal velocities

'@

, at the later time (Fig. 1d). The two dimensional approximation has also

- 5,6,7 . , ,

. been used in a restricted sense to analyze the motion on the axis cof

fj symmetry of a spot. Some of our restrictions will be removed by the

 _

r generalization te three dimensions in Sec. VI.

b

b

b. The simplest idealization of Fig. 1 is a model (Fig. 2) which contains
. three piecewise uniform lavers. The lower region corresponds to the disturbed

[

r‘_"" Yoy
y
1
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boundary laver, the middle region is a compact "inclusion'" representing
the vorticity anomalv, and the upper laver is the disturbed free stream.
The question of the origin of this anomaly is, as previously mentioned.
\ﬂ-QT
beyond the scope of a two dimensional theory, and we'\address the question
of how the anomaly evolves in time. Since the cross-stream velocities in
Fig. lc are relatively weak and broad (compared to the boundary layer
thickness and the horizontal velocities therein), it is reasonable to start
with a long wave approximation, and to see if solutions evolving from the
initial state resemble Fig. 1d. If so, then the theory will have to be
modified at this stage, because the normal velocities in Fig. 1ld are no
longer ''small" and slowly varying.

Fig. 2 shows the model with the undisturbed horizontal velocity profile
appearing on the left. In non-dimensional units the undisturbed vorticity
of the lower layer is unity, the undisturbed velocity of the upper laver is
unity, the undisturbed lower layer thickness is L" ,» and the upper
boundary is at };” . Between the two uniform vorticity lavers of the

-1
undisturbed state a compact "inclusion" having a uniform vorticity J
is introduced in the initial state. The inclusion is bounded below by the
vorticity discontinuity surface L (X, t) , and bounded above bv another
discontinuity surface at t‘: La(x' t)

The piecewise uniform vorticity of the initial state of the two
dimensional flow must, according to the conservation of vorticity, be

piecewise uniform and constant at all time. The initial variations in

L"l are large 0(/) in amplitude but slowly varving in the downstream

direction, i.e. the characteristic downstream scale is larger than the
. -/ . . .
cross-stream sca.es bv a factor E - & . Therefore the dominant

contributicon to the vorticity is 9”/3J , where l((x: t) is the X
¢}
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component of velocity, and it follows that ’Juﬁg is piecewise
uniform. Therefore W is piecewise linear ina , WX is
independent of 3 , and the normal (or vertical) velocity V(x'ljt)

must be a piecewise linear function oi 3 which vanishes at the lower
boundary 3:0 . These qualitative features hold for all nondimensional
times t for which the computed magnitude of ¥ 1is compatible with the
long wave assumption, and these features allow us (Sec. 1I) to separate
the& coordinate from the equations of motion. The derivation of the
long wave equations for L(x,f) is straightforward when -1 = 00)
whereas the experimentally 1,2,3,4 relevant casle of infinite H (treated
in Sec. Il1l) requires more intricate treatment. Moreover, an exact
similarity solution can be found for the finite H case, the results of
which will support some general inferences drawn from numerical solutions
and qualitative considerations of the equations.

We will show that the leading edge of a large amplitude vorticity
inclusion propagates with the free stream velocity, and although the
trailing edge propagates with a lesser velocity no 'quiet" zone appears
in the middle of the compact disturbance. Instead, the normal component
of velocity increases and a ''shock" discontinuityv forms in the middle of
the disturbance - according to the solution of the hyperbolic equations.
This behavior ( W‘—)OO) contrasts with (or perhaps complements)
Landahls‘ solution for an infinitesimal three dimensional perturbation,
in which |V¥| decreases with¢ although the tctal perturbation energy
of th2 spreading wave packet increases. Our result (Fig. 3) provides a

gualitative explanation for the large normal velocities in Fig. 1d.

L v_v*.]
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Our long wave approximation seems to be justified for the early
stage (cf. Fig. la) but it obviously must be modified when the solution
nears the 'shock” stage (defined as the discontinuity point of the
hyperbolic long wave equations). The neglected short wave terms will
probably tend to disperse the shock, but it is plausible that nonlinear
"wave steepening' (large lateral gradients of vorticity and large normal
velocities) will predominate for sufficiently large amplitudes ({i.e.
L-1= ©(:) ). "Wave breaking" (folding of the vorticity isopleths)
may also occur, and the investigation of these strong nonlinear effects

within the framework of a piecewise uniform vorticity model seems feasible.

We shall return to these motivating remarks in Sec. VI.

LONG WAVE EQUATIONS
As previously mentioned, the free stream velocity is the scale for

the horizontal velocity W ; the scale for the ? coordinate is the

d=!

The scale for the nondimensional downstream coordinate

undisturbed boundary layver thickness: is the relative vorticity
of the inclusion.
is the initial width of the inclusion, which is larger than the boundarv
layer thickness bv a factor G“>> | ) and the scale for nondimensional
time Yf is the dnrwnstream width divided by the downstream velocitv.

The scale for the nondimensicnal vertical velocity V(X, 1,1’) is taken

to be & W -scale, so that neither the nondimensional continuity

3“"«lv ¥ 20 -~
o %E 9 o)

times the

equation
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nor the nondimensional kinematic boundary condition

. L\ . dL_ ?er(xl.t)?l-
vix, bixe), £) = i = Tx (2)

contains the ¢  parameter.

The vorticity in each of the three layers is then given

(respectively) by
u_wer= (o, d7, 1)
(3a)

o * cf-‘# (
(3b)

We now let € »Owithall other quantities (most notably H ) kept
constant at ((1), and a separate derivation will be given (Sec. III) for the

interesting case H=o@ . Therefore the long wave limit of 3a is

el io c?" 1y “

md H)

and U must be a piecewise linear function of 3_ . From (1% it then

Ovl

follows that

(3)

or du ldt (and the horizontal pressure gradient) is independent of }

iaud -y ard ). We shall therefore set

e e el i 1
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7
'
2N
b
2 .
F- the value of ‘ﬂﬂt at the top of each layer equal to the value at the
m bottom.
‘: . . .
' If the initial values of the velocity are continuous across each
[N
[:ﬁ-j discontinuity surface, then the circulation theorem requires R to be
u continuous at a1l € . Let U: (XJ t‘) denote the horizontal velocity

at =Lix t) , and let x ¢ denote the horizontal velocity at the
/ /
upper discontinuity surface of the inclusion} then the local thickness of the

3
[’ middle layer is

S (U-U)

- (6)
Fe
i It is readily proved* that the value of da/dt = U/t pu 04Dx ”a“/‘;y
: at 'a‘: Lix #) . is the same as the acceleration
- 5

- 2, U U

: 7 = a2
] of a material parcel on the lower discontinuity surface; and also

3

P -t

;/‘ *Let a laver of vorticity J; be bounded by a discontinuity surface at

p

3 3‘—‘- N (x, t) . The linear velocity in this laver may be written
Y ) -/

] as “("‘:j/t): U (x, ’),t)-— (7—;) a"_,, , and since V(x 7,¢)= ‘-/’7/1/2"
L,

F 4 we have . |

- ~ i ML wlx < ‘ ] N

(du - fut l‘“’" 7, ¢)-"dx ] t U(x, ’I,t)d)‘[u(x,v, t)-J; 7] + G :7(;7_
P
t/y-

: EL 7"

t’l - -

{ The teras containing ¢ are se-a to cancel, and the result proves (7a).
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N (7b)

equals duﬂt at the upper discontinuity surface. Eq. (5) then implies
that (7a) eguals the value of the acceleration at iga » where the horizomtal

velocity is UZ" L , and thus we have

-~ '3 srolL

L (0-L) KU -L) & (T-L “+ ot

Z't ) #. )2- ) - et Tt Tx

(8a)
S
or
5 oL, A(L(J;_'L/l)ro
m ar  x
h (8b)
;h_. Likewise the acceleration (7b) at the top of the middle laver must equal the
b - )
. acceleration (7a) at the bottom of that layer, or
-
o . -
] . -9
’ U, Ul - °Y U
- - - -~
' p) J X 2 r I X (9)
X ]
" Instead of writing a differential equation for the third lever, it is
Duch simpler to use the vertically integrzted continuity eguation. Thus, a thizd

;_. ejquation connecting .D:_, U; L is obtained by equating the transport ‘/;#UJJ«.
EV at X = - o) , or Het + 72 =H~-¥2 , &5 the :transport
E at anv X viz.
}-
L

[
3
3
L
4
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When this is set equal to ff-bﬁ_ the result simplifies to

v

.w—\flw. TV v
oy e s T

[ (U -1+ UCh-2) r LW TN G-TD=p- 14

or
» - Ny < y
= U:H [/71-"4'_ +L/‘1"LD+‘0I‘D/QJ
o ao
-

where

D= -V
(11)
is the velocity difference across the inclusion. When these are used to
eliminate _q U in (8)-(9) we get the longwave equations of motion

[

2 g KO @22l o] = 0

w3 L[;D-z_+H"(.1H~,+L"-4LD+JD*)J=O

52 "2 .

Since [_[.tx/ f) = 1 and D(t-:cf) = 0, the horizontal integrals cof

(12)-(13) vield
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which merely express the conservation of volume for the inclusion (local

thickness of —DJ ) and for the lower layer. A more interesting momentum

integral L

V) Py . 3._ U)U (15)

for the lower layer can be derived by using (= q- ([-J) (8a), (8b),
and (9). Eq. (15) states that the total momentum of the lower layer can only
change if there is a horizontal pressure gradient (-U.' ) in the upper layer.
We confine attention to disturbances with positive vorticity J'-'>O
(changing the sign yields profiles with jet-like structures), and since the
layer thickness (6) must be positive, it folldws that (11) must be negative,

or

Dixz)< o

III. DEEP UPPER LAYER
-1 bR
The foregoing asymptotic expansion is still valid when | >0 H >> €

in which case (12), (13), (10) and (11) simplify to

7 D)t
EELI AT (16a)
A, 3 Jiey-Lh]=o (16b)
ot dx
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n
or, equivalently
?Ul—. ¥ UDJL -
Py L Ix T° (17a)

Vg 91 ar
‘5} * 7’3 23%; =0 (17b)

U= utxot)=U-L (17¢)
Although the foregoing derivation is not valid for the most interesting case
H '<4 ¢+ , because the vertical scale of the irrotational motion in
the upper layer becomes the same as the horizontal scale, we shall give a new
derivation at the end of this section which shows that (17a,b,c) are still
valid, but to 0(€) rather than 0[52) vhen 4= o
The well known solution of (17a)

X (Yz) = 2(qp) + T4,

(174)

states that each value of Uz (and also U5 ) in the initial state is
propagated with constant speed. Two different shock waves will therefore form
at the two points where UZ and vg first become double valued.

The behavior of the two interfaces can be computed from

L=1-15

(18a)
| =L +d (U-U,'_)-a L+vd(r=U)
J (18b)
and the vertical velocities can be computed from
v -G , o<y<lL
33 dx (19a)
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(19p)

Suppose that the initial values of UZ Ug consist of either an elevation

’

or a depression wave, i.e. they each have a single maximum or minimum in
—_—_ L X O . The only other feature of the iotial distribution
which will be assumed is that J‘(/ , i.e. the inclusion is a positive
vorticity anomaly. Now if CE("‘/") contains a maximum, then the solution
of (17b) yields a shock 23&/4‘1 -0 located downstream of the
maximum T% , and if Ué(", G.) contains a miniaum, the shock will occur
upstream of minimum -U; , so that we again have 3'3,; fodw => —o0 ,
Likewise for the sense of the UZ shock. Since Uz = TJ.B*L > 03

the "fast" UZ shock will occur piicEebomaad further downstream than the
"slow" '(fs shock, unless the amplitude of the former is small compared to
the latter.

When the fast shock develops at a point (X Z ) , eq. (19a) is finite,
but eq. (19b) is "'°0/ since dh</ . Therefore strong downdrafts ps =0
develop in the intrusion, and also above (in the lower part of the irrotational
region). Behind this ,.dnd=et—e—laees-ttmM: the slow shock develops at a point
X, 7 where 0 /Ax is finite and }UE’, /Ix = —ou . Therefore
(19a) and (19b) are + ® , and large updrafts occur in the lower (J( L)

d Ke

field of strong vertical velocities, indicated schematically in Fig. 3, (see

layer as well as in the two other layers.

Sec. V for a more detailed calculation), is in qualitative agreement with Fig. 13

. 1
of Kovasznay et al’.




i

m

T

YT ¥ v vy w oy

—

- e

V_‘v.

v -

Lo

13

We now reconsider, for previously mentioned reasons, the validity of the
long wave equations when ,‘-/‘-‘- Q , and this derivation will also indicate
the first order effect of the short waves when the shock stage is entered.
Eqs. (8)-(9) are valid prior to this time because the lower and middle layers
are thin, whereas the upper layer is not, and it is therefore required to

derive the equation of motion for this region whose lower boundary is

y= Lalx,e)= L+ d 0=

Since the vertical/horizontal scales herein will be comparable, and since the
vertical/horizontal perturbation velocities will also be comparable, we first

transform (U, :‘l) by

U= I+ &y, J’ﬁ/é

to the new parameters (d“ J, ) , while leaving the other variables X, t; v

unaltered. This returns us to the familiar (zero) vorticity equation

?‘“l/):{l “IVAx = o ) and the continuity equation 49 /9x 7 DV/DJ! )

or viv= o in the upper layer. The small € simplification

enters in the lower (j, = € L,,) boundary condition, whemethe vertical velocity

is
A L ;I y =
V= :__L:.-r’b,_‘ fd(!) '“,‘ o +O(e)
ot éx /
Wwith this and ¥ (x ®,C)= g Laplace's equation fer ¥  can be solved,
and from this «, at J, €L, can be computed. The result expressed in

teras cf the Cauchv Principle Part of an integral is




..........................

Since ,-1)3 I+ €U, , it follows from (9) that

W,y 3% . & (3R] g8 [Les 8- 201, 4 o

3¢ x0T L4

correct to 0/[2) . To the same order of accuracy, we may replace the )U"/,_\g“
term on the right hand side of (20) by — D:_ U, /4« , and the ?L/}f

term by (8b). Two simultaneous equations for U‘_/ VA , first order

in time, are thereby obtained in which the new 0[6/ term in (20) contains
the highest x-derivates. These will give the leading dispersive effects,
whereas the corresponding terms fromA the lower layers are 042} , and
will only become significant at latér times than do the 0(;‘} terms.

A discussion of these interesting dispersive effects is beyond the scope of

this paper, and it suffices to note that (17a,b) are $11 asymptotically

- 2
valid when ¢ —>0 , H «<¢ .

~ The reader may prefer, at this point, to pass_directly to Sec. VI,

which can be read independently of Secs. IV & V.
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IV. A SIMILARITY SOLUTION

We shall see that Eqs. (12) - (13) are hyperbolic over most
of the regime of interest. But the propagation characteristics
are notably different from that which occurs in passive wave systems,
e.g. in the nonlinear evolution of a "bump" of water on the free
surface of a shallow layer of resting water. In the latter case
the surface elevation separates into the two modes of propagation
associated with the two characteristics. A single isolated disturbance
thereby separates into two oppositely propagating modes leaving a
"quiet" intervening zone in between. But the disturbances in a shear
flow are not passive, and we shall s%ow that the variation in propagation
speed of large amplitude long waves is such that there is a tendency
for the two "modes' (Riemann invariants) to '"lock" (rather than to
separate) in the center of an isolated disturbance. The width of this

coherent feature tends to increase linearly with time, at least until

a "shock" (rather than a quiet zone) forms in the center. This interesting

property will be exhibited by an exact similarity solution of Egqs. (12) -
(13), and a similar behavior seems to occur in numerical solutions
[Sec. V] under conditions less severe than those that will be required
for the similarity solution.

Eefore turning to this problem, it is instructive to note some
formal properties of Eqs. (12) - (13). Vhen L-— / and fI> are

sufficiently szall, the linearization of those equations gives




+ e
E-Z ‘E—X (21a)

dt g (21b)
These have the general solution
(22a)
[(x#)=Dix2) = [, (x-t/H) - DO(X‘f///)
(22b)

where Do(")} LD(") are the initial conditions. Therefore when the
perturbations are infinitesimal,D propagates with unit speed, whereas L-D
propagates with the slower speed ”’/4/ , so that L is a combination
of the two normal modes.

Consider' next the simplest nonlinear solution which occurs when [ -/

is finite but D‘-’O , so that (13) reduces to
2L C. (L oL =
Tf + ( )E @)
(23)
where .
c ()= H (H-1 F355/3)- |

(24a)

is the local propagation speed, naving the properties




(24b)
(25)

Eq. (24b) indicates that this finite amplitude disturbance corresponds to the
"slow" infinitesimal wave solution of (2la,b). But for finite [~/ , the

local propagation speed (24a) will increase downstream if
(26)

If the other mode is also present @ E= 0\ , one may anticipate
that when (26) is sufficiently large, the local propagation speed of the '"slow
wave'' may actually exceed the speed of the fast wave (equal to unity according
to the foregoing linear theory), so that the latter may not be able to
"separate".

To verify this remark, we look for similarity solutions of (12)-(13) such

that D(/‘, [') is a function of L(X, t/ independent of 5? , 1.e.

‘D = D[L(X,/)J

PRI AR, 2D D)L

~3
~

These functions D/L/ will be shown to consist of two families of curves,

branches of which will be properly pieced together to construct a well behzved
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soiution. The more general significance of these functions (Riemann

i

;G- invariants) in the theory of characteristics appears in Sec. V, when we
address the gensral initial value problem, and show that the locking tendency

P
occurs under far less severe conditions than will be required for

h o
the following similarity solution.
—

Substitution of (27) in (12)-(13) gives two simultaneous " linear
(S
equations for ?L/Et oLl/ix !

Dy ¢ 2] oD Doty £-seor )

(28)

O

oL X {D J+[L- Hod™~ DLJ‘)JD’ rﬁ'(ﬂ’ifaL—JLDrlz_J)]

(29)

whose determinant must vanish, and therefore

[L0- 5+ D20V [Lu-4)s 0= #7De-D) < -

ClTld
.

The two roots of this quadratic equation, or

MEERSEMEE S A ana o an s
s d

oa:\> - ’ .}-&
) LH-LO DT {Y. LoV + HLDL-DYH-L+ D)) (aon)
L Q'_D&' L(H-D)+3PL

are differential equations for two curves E (L) passing througn each poiat in
the hodograph rlane. For each such curve the corresponding L/D values in
pnvsical space will be conserved for a point wnhich moves with the local

E propagation speed Ax/dr = Cp  equal to the coefficient in (29), i.e.

bl

S . . . . .
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The term inside the radical of (30b) must be positive, of course, and the
more general significance [Sec. V] of this is that it defines the hyperbolic

domain of (12), (13), whereas negative values are in the elliptic domain.

— The boundary of the two domains inAhodograph plane is therefore given by
Y _up >
2 _ ' ' N
L(-L) D) = —ZZ20-D)(1- &+ %

H H - H H (32)
i and the elliptic side is beyond the scope of the theory [because there will
ﬁ be perturbations which increase exponentially with time)and the smallest waves

will grow the fastest].
{ Consider first the case 0’\2—‘ o) in which the intrusion degenerates into
[
‘P a vortex sheet® at g; L(x, t‘) and the solution of (32) then simplifies to
- D- 4 (L-HL) <o
T
[ (33)
Fe D = 4 (Livwe) >o
, (3%)
[
3
E" As previously mentioned, attention will be restricted to velocityv profiles
'
[
3
*We nhave verified the validicy of (12)-(13) when d’\: c bv means of a

{ separate long wave expansiocn 614’_ { for this special case.
4
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which increase monotonically with j , L.e. DS Qo so that (33} defines

the lower boundary of the hyperbolic domain of interest. This boundary has
a minimum value of D: -/I/l and satisfies D=O at . 4 (Fig.l/ ).
In the hyperbolic region above this curve (but below D - @ ) we look

for solutions of (30b) with ¢'A=0 , Or

/ /3'
ayp -4 ] 1+ ¥D(‘2HD‘_)3 (35)

and such that the local propagation speed

(36)

xn /
o=, - LrWiH-ae R _ad)sLG-L)D,
=

is a continous function of L , 1.e.

/
? /4} is continuous. (37)

the
The solution D/L/ in/gc:dograph plane has the following correspondence

with the solution L/Y, l), D()g 4) in physical space (Fig.a,). The trailing
edge Q, of the compact similarity solution corresponds to A =’, D:

and the leading edge d, corresponds to the same point in/ hogzgraph plane .
Therefore the sclutions of (35) must form a closed curve (as in Fig.i’). But

(37) must be satisfied as the points 4, L, -5 = a,

are traversed,
and this very strong constraint can only be satisfied bv having the (maximurm L,
Tinimum L) points L,, QL. lie on the elliptic boundarv curve (33).

- I/
The reasoun is that the two solutions D:t have the same slope D ‘L) at

such noints. We shall now patch branches of (35) together to satisfv the

foregoing conditions.
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One of the two solutions of (35) passing through .- s=, (the edge
7

point) is
’ \ _

D)= o (38)
and this branch will correspond to the curve Ch 5' in Fig. 4 The other
solution of (35),

UL
!
a DLz it Jrs 1D } (39)

Lin-¢)

!
has a finite slope Iz 6):-/ at For each / value

D-‘O/Z.:'/
on (38) the local propagation speed (36) is
- 3r
! - T
Cte)=-Ls H (K4 TF)
(40)

C-(/)? 7§ < /

whereas for (39) the C,(L) branch of (36) gives the propagation speed, and

in particular

C+(Q) =

(41)

D;c/Lr/

take the (§

at Since (41) exceeds (40), it is cobvious that we want to

branch for the leading edge and C_ for the trailing edge of
our similarity solution.

These two branches passing through -D2=f L= need %o e joined bv
another sclution of (33), such that (37) is satisfied at the two jcining points,
and this is clearly impossible unless the latter lie on the boundary (33).

Through each point of (33) there pass two solutions 1”2-> with the same -D K‘)

PO O P
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decreases as one goes along the solution curve. This cannot intersect the

22

and with the same propagation speed. Therefore the solution (39) is extended

[corresponding to A, l_-,)_ ] until it intersects the elliptic boundary, and

at the point of intersection the other solution:

: Y
2D (L)= 1 2‘/ T h-L) (42)

is constructed, and will correspond to the curve 4_6, (Fig. 3).

The slope of this curve is D_’: //;,_ at point %_ and the slope

’
elliptic boundary again, because D = /[2 at all points on this boundary
(except the singular point [ = // , See below). Neither can the curve }‘_ ;’
intersect the D:o axis, for otherwise D - @ would be implied. The

exception in both previous statements is the singular point Z..—/// D=o
of the differential equation {30a). It only remains to show that through this
point there pass a whole family of solutions of (42), each of which satisfies
the cusp condition D///'/>= ¢ , and one of which corresponds to b, L,'

In the vicinity of the singular point L= H) D- 0 we look for a
class of solutions of (42) having the form D= -(I-L/f/)xd-) , where ©C
is a differentiable function satisfying the cusp condition “(/() = O
Substitution of this P in (42) yields

~ -,L. K;
3.""9-(!-7?)02‘ - - {r- %‘Z(’ 7 +L]}
H

QX ﬁ,«.xﬁ-.;’?-)]* ;—fLZ;ZU“\/";I,’/ZJ* O/<3)
HL -

N DY A
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The asymptotic (L"// ) solution obtained by neglecting the last two terms

is //‘,( - —-H-/,va (,—1./// plus a constant, or

DUk
L (%)

x (constant)

where the different values of the ''constant" generate the family of curves

passing through the singular point. One and only one such curve passes through

b}_. , and this completes the demonstration of the existence of the
similarity solution. More specifically, the solutions were obtained

as follows.

The first order ordinary differential equations (30b) for the hodograph
were integrated numerically using a grid interval of A[=0.00/ , and the
results for (/1’: ;'J.}/‘.-o) and (H = ;1, J\://;) are shown in Fig.§ . The
results for d=v and o}\z//g_ do not differ materially. The variation of
local propagation speed (c) and upper layer velocity’o— is shown in Fig.é
for d.:u . Starting at the downstream edge(l}}) E’oim’. @, in Fig.&],
the valuesof both C andU decrease until the minimum L is reached in
Fig.{- at the left hand cusp (Point b)_ in Fig.e&l), whereupon (C/_(f) increase
to their maximum value at the maximum L (Point 'l’l in Figel.). Both
quantities then decrease to their values at (bl) along a branch which has been
omitted from Fig.é for the sake of clarity. Fig.7. contains a plot of the
velocity M at the top of the lower laver, and the superscripts LTLi indicate
the branch of the hodograph (see inset Fig7 ). The area under the lowest curve

is proportional to the rate of increase of mean sqguare L , because nmultiplicat

ion
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of (8) by L yields

)
TQ

r
&
4] w=JuRes SUAA

-g)

In physical space the similarity solution looks like the sketch
(Fig. 1), except that point b; is required to lie on the upper boundary,
and this is very unrealistic. But we shall show that the following features
of the similarity solution are generalizable and appear in more realistic

calculations. The Lagrangian trajectories of particles entering the leading

edge must first be displayed downwards, relative to their undisturbed level,
whereas upwards displacement occurs later in the center of the region. The
leading edge of the disturbance moves with the free stream velocity, and the

trailing edge moves slower. But the maximum propagation speed occurs at the

crest (max. L), which therefore tends to overtake the trough (min. L). Large |

vertical velocities tend to occur as the wave steepens in the center, and the

neglected short wave dispersive effects which become important prior to this

F‘ time mav extend the pericd of laminar locking by delaying the ''shock' stage.
&

4 V. THE INITIAL VALUE PROBLEM

We will now show that the apparent locking occurs under much more general
conditions than is indicated by the similaritv solution. Of equal importance
is the wave breaking and cther strong nonlinear effects suggested by the
following general theory.

. .o , . 9 . .

The theorv of guasi-lirear hvperbolic equations” assures us that if at some
time t :Zo the two independent variables [e.g. D(x't)) L(xlt) in (12)-(13)]

are single valued in the vicinity of x( , then certain (Rierann) functions

- PP Py R P S LIPS o P P S, 1P LA S S SN VI S T SUCI |
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R (D L)
®* - L are invariant on certain (characteristic) paths

whose siopes

I %

-

gy A (DL

Ax.
?-t_ = )_, (P, L)

DL

The same property is also true for the slope of the Riemann
- the
] invariants i;)/hodograph plane, and so through any given

are only functions of the local , and do not depend explicitly

Xt
L R

point

on

D .
D:_b‘ , LzL, there pass two curves R:}: (o L)= A_* (Du l,) which
are determined by the form of the partial differential equation and not by

the initial data. This consideration allows us to obtain the functional forms

R,

solutions (Sec. IV). After obtaining the functional forms of 2, )*
I

of from some of the properties alfeady computed for the particular
we
shall apply them to the general initial value problem.

What happens if the initial distribution of D[x/ zo) _/_(/k Z‘) is taken to
) /

is ind dent
R(D,/-) s independen

‘3 yor (x x

3

be such that (the as vet unknown Riemann invariant)

X

of " X
J

t=7, , so that two neighboring points( )

at

(Fig. 7a) satisfy

?_,. (D3’Z3)? R+ (DI/ Z')

The corresponding {but as yet unknown) ''fast" characteristic is drawn through

both X, , and }3 ; and a ""slow'" characteristic A, < A_f is also drawn

through X, . The latter must therefore intersect the )* characteristic

t,-dt > &,

passing through )S at some point "2" whose ordinate is

CPREP SR U PV DU VPR SR

= x, -c(\()

(43

e e
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Point "4'" is then constructed by drawing a horizontal line through point "2",
and by finding the intersection with the A,. characteristic passing

through )(‘ . By definition R* must be constant on each of the two J+

lines or

and it then follows from our assumption on the functional form of 'er at =0

that

Ro(D, )= R L)

This means that the value of 2‘- (2 Z_) is independent of X at J 47
and therefore at all subsequent times, if it is initially independent of X
The explicit relation 'D:;D(L) , obtained from the implicit E; = constant
relation is therefore independent of X;Z' , and the class of functions (27)
having this property is already given by the family of solutions of (30b).
Thus the class of similarity solutions obtained in Sec. IV, gives the family
of the constant Riemann invariants. The only remaining question is: which of
the two similarity solutions L, (passing through a given point ]2) L, )

) D CY = 1, T .
corresponds to that function Ny (D. L>- 2* \D/, L.) which is invariant

-

along the fast AL ® C,. D ¢_ characteristic.

tyft

we have alreadv shown that points "1" and "2" have the same R‘ value

cr




and since these points are also on a )_ characteristic, we have

R. (D, 1,)=R-(D, L) oer

R. /i_-
o = 3% (DD N (hath)

The only solution of these two equations is

becausetk;'_ D‘ curves form an intersecting family (linear independence).
This shows that the individual values of 1) and / are independent of
time on the s_lgfharacteristic if ?* ('D, L) is independent of Xx
Therefore the slowly propagating similarity solution D_ must be the one

that corresponds to the fast invariant, in the sense that the relation

R, (D)= Ry (D, ) L,) may be obtained from d D./AL (30b) with

D =_D| / L= L, . Likewise, the slowly propagating invariant passing

through this point is obtained by solving dD, /&L

i

The use of this theory may be illustrated by considering an initial z=

distribution (Fig. §P) for which D(xu)<C, L-/= o . The entire

¢
4
.
A

b
r

,
r.
r

region to the left of the trailing edge 1< Q, in Fig. l/and to the right of

the leading edge. is called the ''constant state' and correspoads toc D= o) L=/

M e &

Through this point (cl 1) in Fig. 85 there pass two Riemann invariants
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E.ij |
t ’R¢= '\7$ , with the abscissa axis D_(D ¢ being the E? invariant.

;u The dashed curves through N D(x,o) are sketches of the two Riemann

o

invariants passing through that point, and at the subsequent times these

curves must be tangent to the hodograph of D(x, t)/ [(x t) . loreover,

the Z=0p hodograph must evolve onto the two constant state Riemann

" invariants for the following reason. From the region downstream of the
trailing edge X?ag there emerge slow characteristics, each of which
[! will eventually be intersected by a fast characteristic emerging from the

- constant state X< . At the intersection the values of D, / must
%’ satisfy R, (D )= (o 1) i.e. D=¢@  is the state to which the
trailing edge tends to evolve. The leading edge tends to evolve on the 2_

invariant passing through (o, |) because the slowly propagating characteristics

from ){)al are intersected by the fast characteristics originating from
)(<&:2 » Wwhereupon R- <D/ /..) - E_ (‘)J)' The temporal evolution

of the hodograph is illustrated in Fig. 7b, and thus we see how the extreme

amplitudes in the fully evolved (constant) states can be computed from the

initial hodograph bv drawing the (dashed) R$ invariants and finding their

intersections with the comstant state invariants.

>
»

e The local propagation speeds can also be computed from the results of

LR B ]

Sec. IV. A necessary condition for mode separation is that the propagation
5‘ speeds so computed do not overlap, i.e. the minimum propagation speed of the
E‘ fast mode (Riemann invariant) must exceed the maximum speed in the slow mode.
If this is not the case, the modes cannot separate with a ''quiet'" intervening
zone.
;. These important qualitative and semi-quantitative conclusions have been
verified by numerical solutions of (12)-(l13), using a standard finite difference

scheme which satisfies the Courant-Friedrichs-Lewv criterion for cozputational
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stability. In all of the following examples the results at selected T
are given relative to a coordinatc system which moves with the mean speed

of the two infinitesimal amplitude waves, and cyclic boundary conditions

are used for the (essentially compact) perturbation. The numerical program
was first tested against the known solutions of 2la,b).

In Fig. § the initial amplitude: wmin D(x0)= =025
was chosen large enough to prevent the modes from separating. Since the fast
wave propagation speed decreases upstream from the leading edge) the slope of
the leading half of the‘D wave decreases (Fig. 9a). The L vave steepens
on its rear side as the wave (Fig. 9b) evolves (from zero) into a crest and
trough configuration, and a shock tends to form in the downward sloping
interfacial region at Z =25 (Fig. 9b). Some of the points lying in
the shock region have been deleted (from Fig. 9a, 9b, but not Fig. 9c) for
clarity of presentation. The deleted points are obviously numerical artifacts
since they do not preserve the D,‘O inequality, as required by the solution

of the differential equation. Fig. 9c shows the expected evolution of the

initial hodograph (L= ') onto the Riemann invariants, together with
the numerical artifacts of the shock.

For the infinite H case we have shown (Sec. III) that the evolutionary
equations (17a,b) are independent of f . Fig. 10 gives the results of an
ex;licit numerical integration of (12)-(13) with H:/D{’ dh—‘o , and the
numerics have been checked against the exact sclution (17d). The initial

state $>0 consisted of Gaussian curves for P and L , as shown in
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Figs. 10a,b. Also shown 1is the evolution of —D(X,t)) L[& t) , and

the hodographs are given in Fig. 10c. Of special interest is the "bursting
bubble" effect (Fig. 10b), which is shown in 2.5 times as great resolution in
Fig. 11. There is a rather spectacular eruption of the boundary laver at
t:" .75 just prior tc the time t= 1.1 of shock formation, and there

is the suggestion of an event which transfers low momentum fluid out of the
boundary laver. There is certainly no tendency for the modes to separate,
and the computer printout at T > 1.1 (not shown here) indicates that

the mid region is not quiet but (numerically) chaotic.

VI. LONGWAVE THEORY FOR THREE DIMENSIONAL DISTURBANCES

We now generalize the foregoing work by introducing a spaljwise velocity
W(l,y,,i, t) scaled in the same way as {{ relative to the longwave expansion
parameter €<<| , where the spanwise coordinate £ is scaled in the
same way as X , so that the nondimensional continuity equation is

Uy + %i *"ﬁé =0

~
For the pressure gradient we have 3?/2; =-€Vdvide in a subsequently

c44))

defined boundary laver , < L;_ (x, & t) , above which is an infinitelv
deep“:@)‘ree stream whose velocity W equals [¢+O¢€) at all X,’, E) Z
It follows that @pPAX = OcCe) = op/ér. for :‘( l.:_ , and

the longwave momentum equations are

o=zdu/dt = Ug - Ly "‘V"‘; + Wiy

(45)
o= dw/dt = Wt Uwy + VVa + K/“z (46)
From ecs. 44-45 we obtain the verticity equation
d = Wy U, ~W X3
Jt "‘3 LI B (49

-~ - - -~ e s A e~ =
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A compazibility requirement on the given initial values of (“-, ‘V)
is that ll'-'l, w= o on and above some surface y = 1.1 (x/ E,O) , and

we shall also require u’ (X) L: (x, !) o)) ;I o] = constant) on this

top surface of the boundary laver. Since the Jacobian of (u,w)

in (48) vanishes on this surface, a material point on it will have the
same value of LQJ (and the same U=/, wzpo ) a; time d& as it had at
t=0 . Let us therefore define the upper boundary ’: L; (x, z,t)

as the solution for y of any two of the equations: K (x, b /K )=/
W(x”, E, ¢)= o) u., ()l, ’, *Jt) = constant. Since particles on this

surface must remain there, the ; component of velocity is

Vix, Ly (%28, t) = 32 O o)

This variable free streamline boundary (¢.e L‘ ) is necessary, of course,

for the compatibility of eqs. (44) - (46) and the lower boundary condition
VX ¢ 2 t)= (o]

If we allow the initial (u’y) to be non=zero e~ y= 2, then two
parcels moving towards each other on the line which connects them, and
having equal velocities perpendicular to that line must ''collide" in a
finite time according to eqs. (45) - (46). This is the simplest
indication that hcrizontal converg;{cgre amplified. But it is desireable
te remeove this special case from consideration by imposing the initial
condition U (x, ©, %, ) = & = w( X, 0, & o) , in which case
u(x’o,zlt)zozw at all times, and the scolutions of cur inviscid model will

saticfv the impeortant viscotke boundary condition.

The next simplest case has a phane of svmmetry ( =0 ) for (U‘ V) ,
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and W is an antisvmmetric function of @ vanishing at large 'i‘} Ixle
V:en the Z derivative of (46) is evaluated on 2Z=o where b(x,y,qt)-

we get the important result

(x Ot) "wz (x,g,g £)
f1 v 058 50

Wa (X Y, 0, f) s W',>
B= wz (X, 5,0 0)
where = )‘(i,j-;t>) Y= g(;' 5, ¢) are the Lagrangian
coordinates of a parcel located at X = i" g b 3 AT T=o .

Eq. (48) with (50) may also be integrated for parcels on the axis and we get

u = dg (5,3 (1+ £ HG))
a§ = %g(x’1' S, O)

Egs. (50) - (51) show that if a parcel has initial spanwise convergence

(51)

T“QN ite spanwise converg~ace increases, and its vorticity

decreases up to the time

- [mimmvm Js(f,a. )Y.

(52)

whereupon a discontinuity forms in the vicinity of the parcel and WU, =P O
On the other hand, parcels with spanwise divergence (& >o) at =0
increase their vorticity linzarly with time, and this behavior suggests a

- !
rationalization for the vorticitv anomaly (Gr ) assumed previously.

Confining attention to the motion of parcels on the &= © axis,
€q
eqs. (45} gl‘w' =k ¢+ i t Bv using this and (51) in the trarsformati
ey 2 - 2
=~ v ey
’cx o* ) “d d
we get
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M . =\ = ?
2 = (14 tTg) 5, + i (Htﬁ)ié

VT g W G (1125 2
5_"'_ tuj?}l" i/f )OJ

agy

Eliminating buﬁx and simplifying the result yields
2y _thg 9y oL o Ths
i |tz OX |+t (lw#)(/’t”a-) (53)

°

which, at anv t, is a readily integrable first order linear equation for y.

The slope of the characteristics in the(y,g ) plane is
d% \ _ -2 @, (%)
7.) = ~th™ng 50
J % 1+2ZUg
and the derivative dg/di along these curves equals the right hand

side of (53). Integration of the ordinary differential equation along the
characteristics gives y (%, i‘ t)

A simple and interesting example occurs if we take E=3 , corres-
ponding to an initially linear downstream velocity profile, which is
perturbed by a 6(”‘.5) corresponding to a spanwise circulation cell.

In this case (54) simplifies to X = constant - t; , and the integration

of dJ /di along the characteristic lines yields the sclution

] dy
¥=[ l+f0’(i‘tj't,7;-7) (55)

w dn
J(x,u,t)':J; I+ £RTETYM)

(5%)

and from | * (’)z/at)g,.j we have

R VO SR




.......

P oG(x-z'»;,n)+r(a-x,)@(,,-:,m)
Vo w,2>= - U+t etn

7)
(o@ (5= - 2;_;(':& % 9’) )

The main result (eg. 57) gives[ with the help of (56)J the normal velocity

at any desired point in terms of the initial values of Yy on 2= 0.
For further discussion suppose that ﬁ.‘ O in the lower half of the

interval 0K 5_‘- } , and ﬁ)o in the upper half; a distribution corres-

. N St e 2 o T T A At e =
’ N ,‘1 . O Lt Tyt . R . .

ponding to an initial updraft (V; 0) on the axis of an isolated initial

-

disturbance, and such as might be realized by squirting some fluid out of an

opening in the J: © boundary. From (55) we see that all the parcels in
the lower region are displaced upwards in Limswith y— + & at time tS
(eq. 52) at the parcel haviang the maximum initial value of 3V/ag .

The velocity profile (56) in the vicinity of the shock has relativelv low
shear at small ¥, and large shear (\E L(./zi\el = IYZOG' > \) in the
uppermost region. Since U= at 3’:0 » the lower half of the velocity
profile will have .nuch smaller downstream velocities rhan occurs at the same

elevation in the undisturbed flow (Ul:g ) . The region of anomalously

low K might be identified with the spike) and the positive vorticity

' anomaly in the upper region is also explained.

[— . e . ' . 1
i i Py -l PR ) O R R S R T
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(an £=0) with 0020 in the lower part of the boundary layer, then

.................................

If the initial Vv is reversed, so that downdrafts (V< o) occur

(55) is finite in this region for finite t , and no discontinuity occurs
here. But the vorticity in the lower region increases with T  as the
descending fluid brings large WU close to the boundary. The large ¥V
singularity occurs in the upper region and further downstream from the
strong shear region which forms at small a, . The limiting factor in the
latter region mav therefore be the short wave instabilities on the generated
shear laver, rather than the wavebreaking at larger g, .

In general eq. (53) will have two singular domains, one of which [Nfo@(ijkq
appears in the illustrative example of this section, and the other{_lf tﬁgli,jka]
appears in the two dimensional theory of the preceeding sections. The
unifving thread is that '"shocks'" or largeV Tend To appear if the horizontal
divergence /dx +Owlig  has negative values in the initial conditions.

It remains to indicate how the motion off the axis of symmetry can be
computed. For the most general longwave problem we have X =;*5(J§i’ 1)t ,

£ < Z+ Dl}z'i; E)t from the momentum equations. When
These are substituted into the Lagrangian form of the continuity equation,

which states that the Jacobian ?(X,y,-l)/di, 5,:) = / , we obtain
| ¥ flz; ay/ai t;/i
t—ﬂ’- aa'/aj twj
t uz 9, /PZ 1+ g |

O—

At anv time € this gives a first order linear equation for g{/‘,flz)

with the boundarv conditioan (x o Z)= (@] , and the equatiocn can be
- ¢

integrated by the method of characteristics. |

- - s e a4 . L o 2 .- e .
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VII. CONCLUSIOX

Longwave disturbances having small finite normal velocities evolve
such that the maximum Yy becomes comparable to the horizontal velocities
of the basic shear flow, and there is a tendency for wavebreaking at later
times (where the theory must be modified to include the neglected short waves).
The two dimensional model (Secs. II- ¥ ) illustrate this effect in
the simplest way, and the detailed calculations provides useful information for
constructing a more general theorv of the breakdown of a laminar disturbance.
We refer to the tendency for wavebreaking to appear at the center of a
compact initial disturbance whose endpoints separate linearly with time

end To
(Fig. I}l ). The important discontinuities ("shocks"zafotm not only when the

upper laver is infinitely deep (H f-w), but also in the.ﬁnneuhoe—eeadem-i-ca'
case of finite H for which the horizontal pressure gradients in the boundary
laver are important.

The three dimensional longwave theorv outlined in Sec. VI shows that
the large v effect is generalizeable, and removes or weakens the
assumptions made for the two dimensional theory. In particular the
vorticityv anomaly in the latter, is rationalized in terms of an initial

hene ’

spanwise divergence, and the spanwise convergences, are responsible for
the evolution of large v. In general (eq. 57), any weak horizontal

convergence on the .xis of symmetry will lead to large normal velocities,

. ; . : . 1, .
such as is observed in the laminar spike just prior to its breakdown.




The time ts (52) when the first shock tends to form equals the reciprocal
of the minimum horizontal d:?vergence (& in the initial state, and jat: the shock
point the _ shear 4(5}) vanishes indepeudent of Iﬁ’ .
If uax (‘3’ = IM@ ' . Then the maximum shear ( Uas&) at t_ is also
indeperident of the wl amplitude. These features, as well as 4/ —» @@

in the shock region, strongly suggest that.

. Lo x4 % £

IB8]>0 T>®

does not tend to the undisturbed ( @'5 o ) flow, in which case the latter

CENE gy i

is said to be unstable to small finite amﬁlitude perturbations (0’).
Although the post shock stage ( T 2 Ts ) is beyond the scope

of a long wave theory, we believe that the wavebreaking effects will lead to

0 AR~ H

an even greater degree of irreversibility than is indicated for the
pre-shock stage.

The longwave theory is also applicable to cylindrically symmetric

perturbations in a round jet bounded by free streamlines (flow out of a

nozzle). Nonlinear , * amplication of the outward radial velocities

is implied, suggesting eventual entrainment-of the-irrotational -fluid -

outside the free streamlinesl = O) .
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LEGEXNDS

1 .
(After Kovasznay et al. (a) Normalized vorticity isopleths on the
axis of symmetrv of a developing laminar spike. ? is normalized
by the boundary layer thickness ar , and iime is normalized by the

oscillation period'7’ . Stretching the diagram horizontally by a

" factor of five gives a non-exaggerated picture of the disturbance in

the x'a plane. (b) Pictprial view of the distribution of the
streamwise vorticity in a plane parallel to the boundary at a later
staggASpike development than in (a). (c¢) Isopleths of velocity
normal to the boundary at stage (a). (d) Isopleths of normal
velocity at a stage later than (a) and also later than (b). The
maximum streamwise vorticity at stage (d) is ! only 1.0/0.6 times
the corresponding value in (a).

An undisturbed shear flow of non-dimensional height L=1 lies below
a free stream of non-dimensional speed 11'- 1 in a channel of
height H. The finite amplitude long wave perturbation aj-by-by-a,
contains another laver of uniform vorticity, and L (x,t) is its
lower boundary.

Schematic distribution of the regions of strong vertical velocity
generated by a positive vorticity anomaly (stippled) in a boundary
laver flow with }4='“° . The strong updrafts occur in all three
lavers, whereas the strong downdrafts do not occur in the lower
boundary laver. The relative positions are such as to generate a

clockwise eddwv.
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Sketch of the hodograph plane in which corresponding values of
L (x,t) and D (x,t) are plotted. The governing equation is
hvperbolic above the curve D= (L"WA, and the cusped curve
aj-by-by-4, is a similarity solution for a locked mode.
Numerical solution for the locked mode similarity solution when /:g
(vortex sheet) and when ):/b' , with H=2,0 in both cases.
Partial hodograph plots of local propagation speed ¢ and upper laver
velocity U for J:o . The two cusps on the left correspond to
point by (Fig. 2). The cusp on the right corresponds to the point by
and the central cusp corresponds to aj. The curves connecting the
central and right cusps are not drawn.
Partial plot of lower layer velocity -Uit on different branches of
hodograph (see inset). The areas under the lower curves give the
rate of increase of mean square L. The symbol (¢) is for dﬁ:‘,
and (x) is for de //1 .

(a) The fast characteristics )V and the slow characteristics.)_
emerging from the t’fo axis, along which the rRiemann invariant
R*(D' L) is assumed constant. (b) The temporal evolution of an
initial hodograph L=1 onto the 'constant state' Riemann invariants.
Large amplitude numerical calculation-

. (a) The initial D (x,0) is Gaussian. t=o(0)) E= 1. 5(R)

t=2.0(+),t=2.5(4&) (®) The initial L (x,0)-1=0,0nd Lex 2.
(c) The initial (+) and last computed ( & ) hodograph. The points
above D=0 are numerical artifacts of the shock region The solidvline
is a Riemann inveriant drawn through min D (x.t; and it should pass
throuzh min D (%x.0) according to the analvtic thecrv. H=2, Cf = 0,

Grid interval A% = 0125, AT = .o1.




Fiz. 10. “Wave breakinguwhen H-'—w . (a) 'D()() , (b) L(»)
(c) D(L) for t=0 (A)) ¢ 5(x) and IO (O)

Fig. 11. The "bursting bubble" of Fig.)@b in greater resolution ( 4X = .003)
for the times indicated near the graphs. For 4 =A 0.6, 0.7, 0.8
only the central regions are drawn. Note that these results are

independent of J (16a,b).
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Laboratory models of circulation in shallow seas

By J. A. WHITEHEAD, JRr
Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, U.S.A.

[Plate 1]

Three laboratory experiments are described. The first was made to observe the flow
field of circulation in a model given by Stommel & Leetmaa (1972). The experiment
consisted of a very shallow (1 or 2 cm deep) annulus with an inner heated wall of radius
25 cm and a cooled outer wall of radius 67 cm, all mounted on a turntable. When the
Ekman number was large the flow was steady and resembled the solutions for a non-
rotating estuary given by Hansen & Rattray (1965), but when the Ekman number
was small the flow became time-dependent. Values of shear and stratification obtained
from theory indicate that the flowing water probably underwent baroclinicinstability.
It appears that such instability may develop on real shelves.

The second experiment consisted of a shallow sea of constant depth bounded by a
deep ocean through a uniformly sloping continental rise. The experiment is cooled from
above and there is a region that exhibits sinking convection cells, which form the
coldest water. This water then spills off the right-hand side of the shallow seca (looking
downstream for counterclockwise rotation) and forms bottom water in the deep
experimental ocean.

The third experiment is a rotating version of the dam-break problem in which a
density current is generated after a barrier has been removed. The rotation causes the
current to lean against the right-hand wall (looking downstream for counterclockwise
rotation) and turbulent eddies are detrained to the side rather than vertically.

1. Tue SToMMEL-LEETMAA SHELF MODEL

Although there have been many theoretical studies of the dynamics of the oceanic waters on
continental-shelf regions, few have been concerned with theories of the general circulation in
such regions. One of the first attempts appears to have been an idealized model by Stommel &
Leetmaa (1972), which concerns the flows on an infinitely long, straight, constant-depth shelf,
subjected to wind stress from above and to fresh water run-off from the continental side. The
effects of friction, diffusion, and cross-shelf advection were retained in the governing equations,
which were derived by the use of an expansion procedure based on the fact that the ratio of shelf
depth to width is very small. Given values of the top wind stress, fresh water run-off, depth and
width of the shelf, and ‘eddy’ properties of the water’s viscosity, diffusivity and alongshore
pressurc gradient, they predicted the cross-shelf density gradient and alongshelf velocity. The
numbers believed to be appropriate for the Mid-Atlantic Bight were used to assess the appro-
priateness of the model to the real shelf, as discussed subsequently by Csanady (1976), Scott &
Csanady (1976) and others.

Here [ do nnt continue to discuss applications of this theory to real shelves, but instead observe
features of this model through observations of flows in a very shallow annulus experiment in the
laboratory. I desired to'sce if any additional boundary layers or instabilities could be observed, or
whether the flow otherwise did not behave as predicted. The dynamics of the experiment differ
from the above theories because there is a heat flux rather than a water flux and there are rigid
boundary conditions at the top. Hence a brief reformulation will he given,

(7]
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Formulation of the problem

The model consists of a layer of fluid of constant depth d, breadth L, infinitely long, and
subject to a lateral temperature gradient 97/0x across its breadth as a model of lateral density
gradient. The system is rotating at rate 4 fin a field of gravity g. The viscosity v of the fluid is
constant, as is the thermal diffusivity « and the coefficient of expansion a. The Boussinesq
cquations will be presented in a dimensionless form by using 4 as the vertical length scale, L as
the horizontal length scale, fd as the horizontal velocity scale, fd?/L as the vertical velocity scale,
pfd as the pressure scale (p is average density), and by representing the temperature as

T' = (x+dT)oT/0x, (1)
so T is the dimensionless temperature correction to a linear temperature distribution in the
x-direction (across the shelf).

If d < L vertical velocities will be much smaller than horizontal ones except near the lateral
edges. The Boussinesq equations with all terms of order d/L neglected are
—v=—p,+Eu,, u=Ey, (2 a, b)

P =—8x, u=PT,, (2¢,d)

where a subscript denotes partial differentiation and
S = (ga/f?)0T/0x, P=«/[fd* and E =v/[fd>

The simplest solutions are antisymmetrical above and below the plane z = 0. Pressure at any
height z can be found by integrating (2¢). The x-derivative of pressure at this value of z is

p.=—82+C, (3)

- where C is the lateral pressure gradient at z = 0.

The left side of equation (2d) is a lateral advection of heat. The right-hand side is the ‘short-
circuiting’ effect first noted by Taylor (1953) for problems where there is advection in one
direction and conduction principally in another direction with smaller length-scale.

To model ‘ wind stress’, it will be assumed that the top and bottom boundaries move with equal
and opposite velocities. In addition there will be no vertical heat transfer through the boundaries,
and hence the boundary conditions are

u=+U, v=+V and 8T/0z=0 at z=+}. (4)

Solutions have the form
u=(—-348-V)g(2)+ Ug(2), (5a)
v=+(§S+V)g(2) + Ugy(2) - Sz, (5b)

PEz
(cosh B —cos 8)

(3§+V+U)sinh g
+{3S+V-U)sing, (5¢)

T=(15+V) 5 el +Upal@ -
where

B = (2E)-4, (6a)

£1(2) = [sinh B(z + }) sin Bz — §) ~sinh f(z - })sin B(z + })] /(cosh S —cos ), (66)

84(2) = [cosh B(z +4) cos B(z—}) —cosh f(z—}) cos B(z + }4)]/(cosh B —cos ). (6¢)
[72]
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The flows vary linearly with S, ¥, and U, and functionally with E. The solutions have very
different structure depending upon whether E is large or small. If £ is large, the solutions can be
reduced to the following polynomials:

u=—(S/3'E)(2-}z) +2Uz, (7a)
v = 2VZ, (7b)
S & 3 U )
T= ‘ﬁ(z‘!‘ﬁ‘e*f@)*‘ﬁ (322~ 42). (7¢)

o~

v
1 0 -1

S T S S S
(a)
A
(6) '<ﬁ' |
I

T M T T 1

-

{c}

Ficure L. Profiles of cross-shelf velocity u, along-shelf velocity v, and temperature T as a function of # = (2E)~#
for no velocity of the boundaries and § = 1. (a) f# = 64, E = 0.00012; (b) # = 16, E = 0.019; (c) # = 4, E = 0.03.

The solutions for « and T are equivalent to those derived by Hansen & Rattray (1965) as model
of estuarine circulation (no rotation). For E small, the solutions can be represented as Ekman
layers plus interior flows because the functions (66) and (6¢) approach

g:1(2) ~ efe-Psin f(z—-}) +e-#e+sin f(z + 1), (8a)
gy(2) ~ efe-Vcosf(z—}) —ePetbcosf(z+}) for B> 1. (85)

For the structure of the solutions to be morc clearly visualized, they were calculated by com-
puter from ecquations (5) and (6) for three values of £, as shown in figure 1. Because the solutions
are antisymmetric about zcro, only the upper half of the solution is shown. At the top, the Ekman
number is small enough for the Ekman layer to be clearly visible near the boundary. In the
interior there is a linear stratification and constant shear due to the thermal wind equations (the
basic state of the Eady problem). At the bottom, the Ekman number is large enough for the
solution to be approaching the limit of Hansen & Rattray.

(73]
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The experiment

A wide cylindrical annulus was used, rather than a very long, straight channcl, to avoid
problems with end walls. The tank shown in figurce 2 had a Perspex bottom 1.25cm thick and
114 cm in diameter, lying on 2 inches (ca. 5 cm) of insulating styrofoam. The cover could rotate
with respect to the bottom tank and was covered by two inches (ca. 5 cm) of styrofoam. The depth
of the test fluid could be held at 1, 2 or 4 cm, depending upon the height of the cover above the
bottom. The inner wall of the annulus was composed of a Perspex disc of 25 cm radius, 1 cm high,
upon which was mounted a waterproofed 33 £ hcating wire. Adjacent to the outer wall of the
annulus was mounted a copper tube of approximately 1 cm outer diameter. This was flushed by
water from a thermostatically controlled bath held at 25.3 + 0.1 °C. Holes of diameter 2 mm were
drilled down through the cover of the annulus to allow access by dye injectors and temperature
probes; when not in use the holes were covered with stoppers. The entire apparatus was mounted
on the 2m turntable at Woods Hole Occanographic Institution.

%}7777777/77}///////////////// //////////////}

Freere 20 Sketch of the eylindrical experimental apparatos. ‘T'he cross-hatehed nuuerial is Perspex. The speckled
material is styrofoam. The upper lid was free to rotate with respect to the basin. ‘The clear area contains
water,

The apparatus was like a large flattened annulus with a width:depth ratio of approximately
30:1 for a t em depth, 15:1 for a 2cm depth or 7.5: 1 for a 4 cm depth. The solution of the basic
flow, which was developed in the previous section, is analogous, but different from, the interior
and the bottom and top boundary layers for a deep annulus as analysed by Robinson (1959). No
solution is developed here for the side-wall boundary layers.

Typical measurements of temperature as a function of radius arc shown in figure 3. The solid
line gives the predicted profile at midplane as calculated in the next section. The temperature
gradient varies with radius because the heat flux per unit arca varies. This illustrates one of the
most essential features of the Stommel-Lectmaa model - that temperatures at different depths
parallel cach other in the presence of a continuous change in temperature in the lateral direction,

The data shown here were for zero rotation but measurements at Ekman numbers down to
approximately 0.02 were almost identical. However, the objection of the experiments was (0
observe the small Ekman number limit. They were not very successful in this respect because a
tme-dependent flow was almost always observed below an Ekman number of 0,02, This is most
clearly shown by a series of 21 runs conducted to determine temperature between the hole of
0.4 cmradius and the hole of 50.8 em radius as a function of rate of rotation. The results are
shown in figure 4 for depths of 1em (solid circles) and 2em (open circles). The temperature
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difference does not increase substantially for the 13 run’ with £ > 0.02, but for the runs with
E < 0.02 the temperature difference began to increase, but a temporal variation was observed in
the signal. The time-scales of the variations are so long that the average of the time-varying
signal is not statistically well defined even after 8 h. The extremies of the temperature diflerences
for cach sample arc shown in figure 4 so that the transitions to a time-dependent state could be
illustrated. The valucs of the temperature differences were divided by a predicted value at zcro
rotation, which will be called AT;, derived in the next section.

To visualize the flow, the styrofoam cover was suddenly taken off the lid and thymol blue
streaks were photographed in the flowing liquid, but heat losses arc so great as to render the
subsequent data of only qualitative value. The time dependence comes from big eddies that
slowly migrate around the tank. The eddies are usually as big as thc ‘shelf width’.

(T-Ty)/K

radius /em

Figure 3. Measurements of temperature as a function of radius r at heights 1 mm (lower), 5 mm (middle), and
f mm (upper) from the hottom of the tank. ‘The apparatus was not rotating for these data, but data with
I = 0.3, 0.15, 0.03 and 0.02 were almost indistinguishable from these. The solid line is a prediction of
temperature dependence at the midplane of the tank.

Quantitative comparison of experiment and theory

The heat flux (@) per unit length of shelf can be determined by the following integration:
§
Q- f | uTdz (9)

In the two limits of E small and E large, the solutions (7) and (8) can be used in the integral
(9) to predict the heat flux. The integrated solutions are

Sz 4L US 4102 .,
Q_.:_W_.._——_——- for E> 0.1 (10a)

and

Q:_g{@s»rV+U)2—2'ﬁ[3<;.9+ V)2+4(3S + V)(L"~U2)]} for £ <001 (105)

To compare the predictions wiih the experimental measurements of temperature as shown in
figure 3, equation (104), with U = 0, was put into dimensional form, the cross-shelf dircction x
was replaced by radius 7, and the heat flux per unit radius was made equal to H/2xr.

An ordinary differential equation for T and r results, which can be integrated to give

T = §(9 Hux2/2nC, a%g®dp) Y + T, (1)

The parameters of the experiment were heat flux H = 55W, g = 980cms-2, specific heat
[ 75 ]
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C,-416Wsg 'K~ a=3x104%K"", r=00lcm?s}, d=1cem, p=1tgem? and
K = 0.0014cm2s-2, With these values (11) becomes
T-T,=122-0.837r}, (12)
where Ty is the temperature at the outside radius (56 cm). This relation is the solid line in figure 3.
The mcasured temperature distribution is close to that predicted although it is slightly less in the
interior, possibly owing to a slight error in the thickness of the test fluid.
The temperaturedifference between the hole of 30.4 cm radius and the hole of 50.8 cm radius is

AT, =331K for d=1cm,
and AT, = 0.42K for d=2cm.

These values were used to normalize the temperatures in figure 4.
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FIGURE 4. Measurements of temperature difference at the midplane between radii of 30.4 and 50.8cm as a
function of Ekman number, with constant heating voltage. The circles are means and the bars denote
extremes in the measured AT over an cight-hour period.

Since the ratio of (10a) to (104) is (4/9!)} £-3, and since temperature gradient scales as /3 in
(10a) and (104), the relation 0.022E-! (shown by the solid line in figure 4) is the solution in the
small-Elimit. The temperature difference was beginning to increase as E decreased in reasonably
good agreement with this relation until the fluctuations became large.

Stability of the flow
We conclude that the slow-rotation limit of the theory is realizable and stable, but at high
rotation an instability developed. The probable origin of the instability is suggested by the
following considerations about the stability of the solution.
To estimate whether the small-Ekman-number limit is baroclinically unstable, a stability

criterion derived by Pedlosky (1970, equation (3.11)) for a two-layer fluid was used with solution
(5) to calculate the criterion

E 32E\# -2
= 2 hatany
PLUS+U+V]ISe < 8 [(szez) +1] (13)
for instability, where € = d/L. For our experiments with U = 0 and V = 0, equation (13) can be
put in a more convenient form:

§ < (4/me) [(BPr)-4-p1] (14)
for instability, where Pr = v/« is the Prandtl number.

[ 76 ]
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The following values are typical of our experiment: Pr = 6.5, £ = 0.01 (# = 7.07), and
€ = 0.04. These will give § < 0.60 for instability. Using LoT/0x = 10K, L = 25cm,
f=10s"1 a=3x10*K-1 and g = 980cms-3, we gct a value of § of 0.12 which easily fits
the instability criterion.

Hence it is reasonable to assume that the eddies observed here are produced by baroclinic
instability. For a real shelf, with Pr = 1, E = 0.01, and € = 0.001, the criterion (14) (without

wind stress) would be
§ < 298.

Using a salinity gradient equivalent toa AT of 30K, L = 100km, f = 10-4and & = 3 x 104 we
get a value of § of 88, so again the criterion for instability is met.

The effect of a rotating lid

Equation (13) implies that we can stabilize the fluid by imposing differential flows in the top
and bottom boundaries. This effect occurs because such differential flows do not generate
vertical shear (for constant §) but do alter the stratification in the interior for the small-E limit
(see equations (55,¢)). The rotating lid was incorporated to sce if we could detect such an effect
but it did necessitate the removal of some insulation. Of course in this experiment § will change
with lid rotation anyway, so in our experiments the radial temperature gradient was measured
directly by thermistors implanted in the bottom of the tank. In addition, insulation was removed
from the top lid for visualization. Since heat losses were then quite large the observations of
whether a flow is stable or not are only qualitative, and a quantitative verification will require a
better insulated apparatus. Nonetheless a qualitative verification was obtained. Figure 5 (plate 1)
shows three flows: when the lid was rotating faster than the apparatus, at the same speed, and
slower. When the lid rotates faster, the flux in the Ekman layers due to differential shear is in the
same sense as the buoyancy-driven flow; thus heat transport is aided, stratification is increased,
and shear is decreased, resulting in a net stabilization. The dye streaks in figure 5(a) are laminar
except for internal waves that are radiated off the dye inserts. When the lid did not rotate
differentially, the experiment was still in an unstable state as shown in figure 5(6). When the lid
rotated slower than the apparatus, the flux in the Ekman layers due to differential shear was
opposite to the density-driven flux, i.e. water flows toward the centre in the top Ekman layer and
away from the centre in the bottom one. Large shear may even force a density inversion and
gravitational instability. Figure 5(c) shows very strong turbulence with small eddies that rapidly
mix the dye. For these runs the expression

n2BPr(}S + V) Se2,

which according to (13) must be less than onc for instability {for 32E/8%2 < ), was respectively
of the order of 40, 0.1, and - 40. Time dependence rendered these estimates accurate to only
a factor of two.

Eleven runs were made with the tank at a depth of 4cm. and f - 0.665-', which gave an
Ekman number of 9.5 x 103, The velocity of the top lid was left constant for 2 hours, after
which streak lines were photographed. The results were that the flow was laminar when
rEAP (35 + V)8e? = 10,7, 1.3, and 0.8; the flow exhibited large eddies like the kind in the middle
of figure 5 when n28Pr(15+ V)8e? = -2, — 5, and —40.

In view of the uncertainty about the estimates of lateral density gradient, it appears that the
main prediction of the theory - that the flows arc subjected to baroclinic instabilities or actual

[77]
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density inversions when certain critical parameters are exceeded - has been verified. Although
it is tempting to report more quantitative details, the effect of heat loss, depth variation up to
1 mm, and influence of the measuring probes may dominate them.

On real shelves (which might have a density flux due to fresh water run off rather than hcat)
we note that winds would aid the flux of low density water offshore, as does our prograde rotating
lid, if they are blowing offshore or to the left facing offshore (in the Northern Hemisphere and on
the assumption that low density water is near the coast). Those winds would tend to stabilize the
flow. When winds blow onshore or to the right the density flux would be hindered and the waters
would be destabilized as in figure 5 (¢).

The effects of a free boundary

If there is a stress-free boundary above the water for small Ekman number, the Ekman layer
is changed to a zcro-stress Ekman layer. This layer transforms the uniform vertical shear
gencrated by the thermal wind relation to zero and is not capable of advecting as much heat
laterally. The solutions of equations (24-d) in the limit of small E, with the boundary conditions

Ouf0z =0w/0z=0T/f0z=0 at z=1},
u=v=0T/0z=0 at z=-},
have the form
u = —(8/2B) e#e~¥[sin f(z - }) — cos B(z— })] — (§/B) sin B(z + }) e~Ae+D), (15a)
v =(8/28) e”e-P[sin f(z - }) +cos f(z—})] - (S/B) cos Bz + }) e PP —S§(z + }) + §/B, (15b)
T = (ES/2Pp) efe—[sin f(z— }) + cos B(z—})] — (ES/PB) cos f(z + }) e-Pe+d — (ES/P)(z).
(15¢)

This solution differs from the rigid-lid solutions in two ways. First, heat flux per unit temperature
gradient is decreased by a factor of #-! owing to the presence of that factor in (15a). Sccondly,
a net transport along the shelf (around the annulus) is predicted in (1554). To test whether
transport is observed, the rigid lid was removed from the tank, and the temperature of the bath
was set at 5 °C so that the water in the apparatus would remain cold and would not transfer much
heat to the atmosphere. The basin was covercd with clear cellophane. The voltage of the heater
was set at 30V a.c., so that an r.m.s. wattage of 13.5 W was produced. The apparatus was
rotated until the temperature field of the liquid built up to a steady value, after which dye was
injected into the fluid. Photographs of the dye strecaks were taken cvery 55 to record movement
of the dye, and a steady flow around the cylindrical tank was observed.

One can predict velocity as a function of heat flux by using solutions {15a—c) to predict ¢ T/0x

as a function of heat flux: 3T /dx = (8f3HP/d%C, g%a?Pr)},

where A is heat flux per urit length of shelf, C, is the specific heat, and « is the coefficient of
expansion. The velocity as a function of heat production per centimetre of arc is

v = 2(gaH/pC, Pr)t (2E)-}.

For the experiment, the appropriate magnitudes arc g = 980cms-2, pC, = 4. 16 WsK-'cm™3,
a=3x10"4 H=0.09Wcm~!, and Pr = 5.5, and so the velocity as a function of £ is given by

v = 0.20(2E)-4.

For this experiment E = 0.311 x 10-2, and the above E-formula gives a velocity of 0.48 cms™!;
[ 78]
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FIGURE 5. Streak lines for the first experiment when the upper lid is rotating (a) faster than the tank, (5) with the
tank and (¢) slightly slower than the tank. The streak lines on the left are wavy owing to internal lee waves
being scattered off the dve probe: otherwise the tlow is laminar. The streak lines on the middle reveal large
sluggish eddies. On the right the differential shear of the lid is generating a verv small stratitication that has
considerable small-scale turbulence which mixes the dve. The Ekman number is 9.5 x 1074,

FiGURE 6. fa' Streak lines for moderate rotation. The dark dye comes off wires that are strung across the tank.
1h) Streak lines for fast rotation. The geostrophic eddics are visible throughout the sheif, some with sinking
regions.

(Facing p. 590)
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the velocity of the dye was about the same. Other runs were done at different rates of rotation, and
observed velocities did appear to agree crudely with computed velocities, but there were sufficient
heat losses and wind drag to discourage attempts to obtain precise quantitative comparisons.

In summary, even this simplest shelf model can often be unstable. Winds can affect the model
by generating circulations that will either increase or decrease heat (or fresh water) transport and
thereby alter the stability. Alongshore currents can be generated as predicted.

2. A SHALLOW SEA WITH DENSE WATER FORMATION

If waters in a shallow sea are subjected to much surface cooling and evaporation, they arc
found to be denser than water in the neighbouring deep ocean. This is due to the eflect of surface-
evaporative and sensible cooling, both of which decrease temperature, and the first of which
increases salinity also. Often this denser water stays confined on the shelf owing to the action of
wind set-up or because of topographic barriers. Sometimes the water is observed to spill off the
edge of the shelf and irreversibly contribute to the deep waters of the world’s oceans. An out-
standing and important example of this later class of shelf flows is the flow off the shelf of the
- Weddell Sea, as discussed by Gill (1973) and Killworth (1979). A recent observation by Foldvic
(private communication) of a strong bottom current coming off the Weddell Sea through the
Filchner depression emphasizes the importance of shelf regions in generating the thermohaline
structure of the occans.

The main part of the second experiment (built by T. Sugimoto, who also did the bulk of this
experiment in consultation with the author) was a rectangular basin mounted on a rotating
turntable. In the basin is a square shelf 50 cm x 50 ¢cm x 5 cm deep connected by a narrow (10cm
wide) slope to a decper basin 30 cm x 50 cm x 15 cm deep. The slope thus emphasizes the dramatic
contrast between shelf (which in our model has zero bottom slope even though real shelves do not)
and shelf break. The enclosed fluid is coolcd through a top lid and heated through an offshore
aluminum side wall. This experiment thus also emphasizes winter, or intensc cvaporation, rather
than summer or fresh-water run-off which was emphasized in § 1. Outside the wall is a stirred
thermostatically regulated bath. The bottom of the top lid is composed of Perspex plate 6 mm
thick above which is a channel 6 mm deep, 56 cm wide, and 91 cm long, through which chilled
water is made to flow. The channel is covered above by a 6 mm Perspex plate. Running water
is introduced at one end of the lid and removed at the other end, the water coming from a cooled
thermostatically controlled bath. The temperature difference between the test fluid and the
water in the upper lid was much larger than temperature variation in the tank, so to a first
approximation the fluid was cooled uniformly from above. Side walls and the bottom of the test
chamber were made of Perspex plate 12.6 mm thick for better insulation.

Photographs of the current pattern were taken by a 35 mm camera and also by a 16 mm cin¢
camera 1.1 m above the top of the basin. Visualization was with the thymol bluc method in which
a pH-sensitive indicator is buffered to its transition pH, so that an clectric voltage applicd
between wires results in the fluid near the wires changing from ycllow todark bluc. [t was possible
to trace the movement of the fluid for a few minutes thereafter. Temperature in the basin was
measured by a thermistor put through onc of 25 small holes in the top lid.

It took over 3 h for the temperature distribution of the test fluid to become steady. Although
the current patterns change almost continuously with rate of rotation, they can be classified into
the following three groups.
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(a) Very slow or no rotation. The tank is smaller than the Rossby radius ([g(0p/p0z2) d2]4 f-1).
Vertical circulations predominante so that flow is likc a Hadley cell. Water is hcated at the
offshore wall and flows toward the inner shelf, bending slightly to its right (for anticlockwise tank
rotation). The heated water is also being cooled from above so there is a surface-mixed layer with
convection rolls aligned in the direction of flow. In the *sinking’ region the mixed layer extends
to the bottom. The densest water in the tank is in this region, and it sinks under the surrounding
water, makes its way to the shelf break (curving to the right) and plunges off the edge of the shelf
break to form bottom water in the model ‘ocean’. The sinking region is limited to a narrow inner
coastal zone, the width of the zone being less than 2 cm.

Ficure 7. A temperature section from shelf to shore for (a) no rotation,
(b) modecrate rotation, and (¢) fast rotation.

(b) Moderate rotation (figure 64, plate 1). The tank is approximately the size of the Rossby
radius. Horizontal single gyres of basin scale are formed on the shelf. The flow of hot water into
the shelf is cyclonic and the lower outflow from the sinking region is anticyclonic. The sinking
region is in the right-hand corner (facing offshore). Cold water formed there flows along the shelf
break, curving toward the right, hits the right-hand wall and spills off from the shelf in a strong
downwelling jet. As the rotation rate is increased, the width of the jet decreasces, and curvature of
the gyre increases. Also the gyre tends to retreat toward the inner coastal part of the shelf.

(¢) Strong rotation (figure 64, plate 1). The tank is larger than the Rossby radius. Turbulent
cddies are predominant: they fill the shelf as well as the offshore region. Sinking occurs in the
centre of some, but not all, eddies. The eddies are mostly cyclonic in the upper layer and anti-
cyclonic in the lower layer but occasionally a gyre is cyclonic from top to bottom. The size of the
eddies decreases as the rotation rate is increased. On average the shelf-bottom water flows slowly
along the shelf break towards the right-hand side-wall (facing oflshore) and flushes out as a
downwelling jet at the right-hand wall, but cyclonic eddies on the shelf break also contribute to

[ 80]
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the flushing of the shelf water. Warm surface water offshore enters onto the shelf intermittently
in the upper layer above the shelf break as well as along the left-hand side-wall (facing offshore).

The transition from () to (¢) is variable. Sometimes two, three or four gyres are stcady, at
other times the fluid is very unsteady.

Thermal structures

(a) Slow or zero rotation (figure 74). Thermal effluents about 2.5 cm thick extend from the
offshore side-wall towards the shelf. They are cooled down rapidly but intrude close to the inner
coastal-wall boundary of the shelf by advection. Upper layers are well mixed (convection rolls
were clear) but the lower layer is stratified.

(6) Moderate rotation (figure 75). Warm offshore water comes into the shelf along both the
right-hand and left-hand side-wall boundaries and then circulates. The density structure is
basically the same as that for (a) except that the width of the density current along the walls
decreases. There is a strong jet flowing along the shelf break towards the right-hand side in the
lower layer. It hits the right-hand wall (facing offshore) and cascades down the slope.

(¢) Fast rotation (figure 7¢). Temporal variability is significant owing to turbulent eddies, and
each vertical section differs. However, usually a distinct thermal front is formed at the shelf break,
although the front wanders around and varies in association with turbulent eddies.

This experiment, although extremely complicated physically, points out phenomena that may
exist on real shelves in winter (or on shelves subjected to intense evaporation). Measurements of
the curvature of the circulations on the shelf indicate that the radius of the gyres is roughly
proportional to the internal Rossby radius of deformation NH/f, where H is the depth of the shelf
and N is the local Brunt-Viisali frequency. Also, a sizeable percentage of the flux off the shelf
occurs near the right-hand wall, through a rotating density current. The magnitude of the
temperature difference between the sinking and offshore regions can be reasonably predicted
through the use of simple rotating hydraulic formulas (as given in Whitehead et al. 1974) of the
form Q = g*h%/2f, where k is the fluid depth of the entire shelf and @ is volumetric flux.
Equating g* = gaAT and H = pC, ATQ, where AT is the temperature difference between the
coldest water and thc water offshore, we predict AT = (2fH/pC,agh?)}. This formula was
reasonably well obeyed. There is usually a distinct front at the edge of the shelf which hinders
sizeable mass flux off the span of the shelf break. It is not known why this frent is so persistent.
Finally, the sinking regions are only located in a predictable region for small rotaiion rates (large
Rossby radius compared with the shelf). For larger rotation rates the sinking regions must first
be located by some remote sensing method. In the laboratory a human eye often suffices but in the
real ocean spaceborne or airborne sensors may have to be used. Finally, the elusive chimneys
(Killworth 1979) may have been observed here. The general nature of our sinking rcgions —
cyclonic inflow to a sinking region with one or more sinking plumes, and anticyclonic outflow from
the water formation region, seems to be similar. By forcing the water to have a convection region
we may have produced what may happen not only on shelves but also in deep polar occans.

3. ROTATING GRAVITY CURRENT

The third laboratory modcls were done in conjunction with M. Stern, B. L. Hua & N. Paldor
(manuscript in preparation). The purpose was to model a gravity current in a rotating fluid. The
work was primarily motivated by a recent theory by Stern (1980) and by the possibility that
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inertial jets lie along the coasts of some shelves, gencrated by intense spring run-off or large
density contrasts near straits.

Experiments were made in a Plexiglass rectangular tank. Grooves were cut into the sides and
hottom of the *a..i: to allow a sliding gate, of 22-gauge (0.80 mm) stainlesssteel, to divide the tank
into two chambers. The procedure was to fill the tank with tap water to a depth of 18.7cm. A
measured amount of salt was added to the water, and the water was mixed thoroughly. The gate
was slid into the set of slits to a depth 10cm above the bottom of the tank, and two pieces of
}inch (orca. 0.6 cm) plywood were floated in the shorter chamber on one side of the gate. The
tank was covered by a Plexiglass lid, the turntable was brought to the desired rate of rotation,
and the salt water was allowed to spin for 15min to reach a state close to solid-body rotation.
The preparation for the experiment was completed by siphoning some coloured water onto the
plywood floats in the small chamber until 4 cm of fresh water floated above the salty water.

After the gate was removed, the fresh water was observed to flow over the salt water, and the
Coriolis force caused the water to flow as a geostrophic gravity current towards the ‘coast’ (the
right-hand wall looking downstream with the basin rotating counterclockwise). The current was
then deflected by the wall and caused toflow downstream next to that wall. The current is similar
to a non-rotating density current in that it has a front deeper than the current behind, and was
observed to move with speed of approximately 1.6(g*h)t, where g* = gbp/p, 8p is the density
difference between the twofluids,and 4 is the local depth. It differs from its non-rotating counter-
part in several ways. The most obvious is that it hugs the right-hand wall. It has a width of
approximately 0.4(g*4’)}4 f-1. It detrains eddies laterally rather than vertically; these eddices lic
alongside the more laminar current.

It is anticipated that such currents may be encountered near the mouths of rivers or near straits
connecting bodies of water of different densities, in which case measurements of propagation speed
and width would be interesting. The observation of a possible gravity current by Mork (this sym-
posium) is promising.

4. CONCLUDING REMARKS

Very shallow shelves (§ 1), shelves with a strong break and sides (§ 2), and coastal jets (§ 3) have
been described in this paper. All experiments demonstrated the tendency for baroclinic processes
on shelves to form geostrophic turbulence. In the first experiment the cross-shelf density flux was
provided by viscous boundary layers. In the second and third by a side-wall. In shallow seas the
flushing may be aided or hindered by winds, bathymetry, tides, offshore pressure gradients or
other factors, but clearly the role of the eddies must often be addressed. This is onc of the chal-
lenges for future laboratory studics.

We have purposcly not applied these models in detail to specific shelves nor have we hoped to
cover comprchensively all the types of shelves in the world. Since there arc at Ieast 150000 km
of shelves in the world it is reasonable to expect that there are soine shelves modelled well by
these few examples, while others (possibly most) are not. A realistic assessment and hints for
other models will come as the oceanography of shallow seas matures.

Supro-t for this research was from the Ocean Sciences Division, National Science Foundation,
under Grant QCE80-18322 for the first two experiments, and the United States Office of Naval
Research for the third under contract N00014-81-C-0010. Thanks are due to T. Sugimoto for
allowing the use of his data and to Robert Frazel for skiltul lahoratory assistance.
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